ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining the Effects of Emotional Valence and Arousal on Takeover Performance in Conditionally Automated Driving

75   0   0.0 ( 0 )
 نشر من قبل Lionel Robert
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In conditionally automated driving, drivers have difficulty in takeover transitions as they become increasingly decoupled from the operational level of driving. Factors influencing takeover performance, such as takeover lead time and the engagement of non-driving related tasks, have been studied in the past. However, despite the important role emotions play in human-machine interaction and in manual driving, little is known about how emotions influence drivers takeover performance. This study, therefore, examined the effects of emotional valence and arousal on drivers takeover timeliness and quality in conditionally automated driving. We conducted a driving simulation experiment with 32 participants. Movie clips were played for emotion induction. Participants with different levels of emotional valence and arousal were required to take over control from automated driving, and their takeover time and quality were analyzed. Results indicate that positive valence led to better takeover quality in the form of a smaller maximum resulting acceleration and a smaller maximum resulting jerk. However, high arousal did not yield an advantage in takeover time. This study contributes to the literature by demonstrating how emotional valence and arousal affect takeover performance. The benefits of positive emotions carry over from manual driving to conditionally automated driving while the benefits of arousal do not.

قيم البحث

اقرأ أيضاً

In SAE Level 3 automated driving, taking over control from automation raises significant safety concerns because drivers out of the vehicle control loop have difficulty negotiating takeover transitions. Existing studies on takeover transitions have f ocused on drivers behavioral responses to takeover requests (TORs). As a complement, this exploratory study aimed to examine drivers psychophysiological responses to TORs as a result of varying non-driving-related tasks (NDRTs), traffic density and TOR lead time. A total number of 102 drivers were recruited and each of them experienced 8 takeover events in a high fidelity fixed-base driving simulator. Drivers gaze behaviors, heart rate (HR) activities, galvanic skin responses (GSRs), and facial expressions were recorded and analyzed during two stages. First, during the automated driving stage, we found that drivers had lower heart rate variability, narrower horizontal gaze dispersion, and shorter eyes-on-road time when they had a high level of cognitive load relative to a low level of cognitive load. Second, during the takeover transition stage, 4s lead time led to inhibited blink numbers and larger maximum and mean GSR phasic activation compared to 7s lead time, whilst heavy traffic density resulted in increased HR acceleration patterns than light traffic density. Our results showed that psychophysiological measures can indicate specific internal states of drivers, including their workload, emotions, attention, and situation awareness in a continuous, non-invasive and real-time manner. The findings provide additional support for the value of using psychophysiological measures in automated driving and for future applications in driver monitoring systems and adaptive alert systems.
It is extremely important to ensure a safe takeover transition in conditionally automated driving. One of the critical factors that quantifies the safe takeover transition is takeover time. Previous studies identified the effects of many factors on t akeover time, such as takeover lead time, non-driving tasks, modalities of the takeover requests (TORs), and scenario urgency. However, there is a lack of research to predict takeover time by considering these factors all at the same time. Toward this end, we used eXtreme Gradient Boosting (XGBoost) to predict the takeover time using a dataset from a meta-analysis study [1]. In addition, we used SHAP (SHapley Additive exPlanation) to analyze and explain the effects of the predictors on takeover time. We identified seven most critical predictors that resulted in the best prediction performance. Their main effects and interaction effects on takeover time were examined. The results showed that the proposed approach provided both good performance and explainability. Our findings have implications on the design of in-vehicle monitoring and alert systems to facilitate the interaction between the drivers and the automated vehicle.
Situation awareness (SA) is critical to improving takeover performance during the transition period from automated driving to manual driving. Although many studies measured SA during or after the driving task, few studies have attempted to predict SA in real time in automated driving. In this work, we propose to predict SA during the takeover transition period in conditionally automated driving using eye-tracking and self-reported data. First, a tree ensemble machine learning model, named LightGBM (Light Gradient Boosting Machine), was used to predict SA. Second, in order to understand what factors influenced SA and how, SHAP (SHapley Additive exPlanations) values of individual predictor variables in the LightGBM model were calculated. These SHAP values explained the prediction model by identifying the most important factors and their effects on SA, which further improved the model performance of LightGBM through feature selection. We standardized SA between 0 and 1 by aggregating three performance measures (i.e., placement, distance, and speed estimation of vehicles with regard to the ego-vehicle) of SA in recreating simulated driving scenarios, after 33 participants viewed 32 videos with six lengths between 1 and 20 s. Using only eye-tracking data, our proposed model outperformed other selected machine learning models, having a root-mean-squared error (RMSE) of 0.121, a mean absolute error (MAE) of 0.096, and a 0.719 correlation coefficient between the predicted SA and the ground truth. The code is available at https://github.com/refengchou/Situation-awareness-prediction. Our proposed model provided important implications on how to monitor and predict SA in real time in automated driving using eye-tracking data.
To better understand the impacts of similarities and dissimilarities in human and AV personalities we conducted an experimental study with 443 individuals. Generally, similarities in human and AV personalities led to a higher perception of AV safety only when both were high in specific personality traits. Dissimilarities in human and AV personalities also yielded a higher perception of AV safety, but only when the AV was higher than the human in a particular personality trait.
481 - Ziyao Zhou , Chen Chai , Weiru Yin 2021
The purpose of this paper is to develop a shared control takeover strategy for smooth and safety control transition from an automation driving system to the human driver and to approve its positive impacts on drivers behavior and attitudes. A human-i n-the-loop driving simulator experiment was conducted to evaluate the impact of the proposed shared control takeover strategy under different disengagement conditions. Results of thirty-two drivers showed shared control takeover strategy could improve safety performance at the aggregated level, especially at non-driving related disengagements. For more urgent disengagements caused by another vehicles sudden brake, a shared control strategy enlarges individual differences. The primary reason is that some drivers had higher self-reported mental workloads in response to the shared control takeover strategy. Therefore, shared control between driver and automation can involve drivers training to avoid mental overload when developing takeover strategies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا