ﻻ يوجد ملخص باللغة العربية
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete setting, a conjecture of van den Berg, Bolthausen and den Hollander [BBH04], who analyzed this question for the Wiener sausage in finite-time horizon. The proof builds on their result (which was resumed in the discrete setting by Phetpradap [Phet12]), and combines it with a series of tools that were developed in recent works of the authors [AS17, AS19a, AS20]. Moreover, we show that most of the intersection occurs in a single box where both walks realize an occupation density of order one.
We prove that the Beta random walk has second order cubic fluctuations from the large deviation principle of the GUE Tracy-Widom type for arbitrary values $upalpha>0$ and $upbeta>0$ of the parameters of the Beta distribution, removing previous restri
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
Let ${{bf mathcal{Z}}_n:ngeq 1}$ be a sequence of i.i.d. random probability measures. Independently, for each $ngeq 1$, let $(X_{n1},ldots, X_{nn})$ be a random vector of positive random variables that add up to one. This paper studies the large devi
Let $sigma(u)$, $uin mathbb{R}$ be an ergodic stationary Markov chain, taking a finite number of values $a_1,...,a_m$, and $b(u)=g(sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion type process $$ dX^epsilon_t =
We consider a variant of a classical coverage process, the boolean model in $mathbb{R}^d$. Previous efforts have focused on convergence of the unoccupied region containing the origin to a well studied limit $C$. We study the intersection of sets cent