ﻻ يوجد ملخص باللغة العربية
In this paper, we study the asymptotic thin-shell width concentration for random vectors uniformly distributed in Orlicz balls. We provide both asymptotic upper and lower bounds on the probability of such a random vector $X_n$ being in a thin shell of radius $sqrt{n}$ times the asymptotic value of $n^{-1/2}left(mathbb Eleft[| X_n|_2^2right]right)^{1/2}$ (as $ntoinfty$), showing that in certain ranges our estimates are optimal. In particular, our estimates significantly improve upon the currently best known general Lee-Vempala bound when the deviation parameter $t=t_n$ goes down to zero as the dimension $n$ of the ambient space increases. We shall also determine in this work the precise asymptotic value of the isotropic constant for Orlicz balls. Our approach is based on moderate deviation principles and a connection between the uniform distribution on Orlicz balls and Gibbs measures at certain critical inverse temperatures with potentials given by Orlicz functions, an idea recently presented by Kabluchko and Prochno in [The maximum entropy principle and volumetric properties of Orlicz balls, J. Math. Anal. Appl. {bf 495}(1) 2021, 1--19].
Consider the projection of an $n$-dimensional random vector onto a random $k_n$-dimensional basis, $k_n leq n$, drawn uniformly from the Haar measure on the Stiefel manifold of orthonormal $k_n$-frames in $mathbb{R}^n$, in three different asymptotic
In this article we prove three fundamental types of limit theorems for the $q$-norm of random vectors chosen at random in an $ell_p^n$-ball in high dimensions. We obtain a central limit theorem, a moderate deviations as well as a large deviations pri
In [A dozen de {F}inetti-style results in search of a theory, Ann. Inst. H. Poincar{e} Probab. Statist. 23(2)(1987), 397--423], Diaconis and Freedman studied low-dimensional projections of random vectors from the Euclidean unit sphere and the simplex
Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. For fixed $p in (1,infty)$, let $(X^{(n,p)})$ and $(theta^n)$ be indep
The convex hull generated by the restriction to the unit ball of a stationary Poisson point process in the $d$-dimensional Euclidean space is considered. By establishing sharp bounds on cumulants, exponential estimates for large deviation probabiliti