ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable feature subset selection: A Shapley value based approach

264   0   0.0 ( 0 )
 نشر من قبل Sandhya Tripathi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

For feature selection and related problems, we introduce the notion of classification game, a cooperative game, with features as players and hinge loss based characteristic function and relate a features contribution to Shapley value based error apportioning (SVEA) of total training error. Our major contribution is ($star$) to show that for any dataset the threshold 0 on SVEA value identifies feature subset whose joint interactions for label prediction is significant or those features that span a subspace where the data is predominantly lying. In addition, our scheme ($star$) identifies the features on which Bayes classifier doesnt depend but any surrogate loss function based finite sample classifier does; this contributes to the excess $0$-$1$ risk of such a classifier, ($star$) estimates unknown true hinge risk of a feature, and ($star$) relate the stability property of an allocation and negative valued SVEA by designing the analogue of core of classification game. Due to Shapley values computationally expensive nature, we build on a known Monte Carlo based approximation algorithm that computes characteristic function (Linear Programs) only when needed. We address the potential sample bias problem in feature selection by providing interval estimates for SVEA values obtained from multiple sub-samples. We illustrate all the above aspects on various synthetic and real datasets and show that our scheme achieves better results than existing recursive feature elimination technique and ReliefF in most cases. Our theoretically grounded classification game in terms of well defined characteristic function offers interpretability (which we formalize in terms of final task) and explainability of our framework, including identification of important features.

قيم البحث

اقرأ أيضاً

Game-theoretic formulations of feature importance have become popular as a way to explain machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the games unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values do not provide explanations which suit human-centric goals of explainability.
Game-theoretic attribution techniques based on Shapley values are used extensively to interpret black-box machine learning models, but their exact calculation is generally NP-hard, requiring approximation methods for non-trivial models. As the comput ation of Shapley values can be expressed as a summation over a set of permutations, a common approach is to sample a subset of these permutations for approximation. Unfortunately, standard Monte Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi Monte Carlo methods are not well defined on the space of permutations. To address this, we investigate new approaches based on two classes of approximation methods and compare them empirically. First, we demonstrate quadrature techniques in a RKHS containing functions of permutations, using the Mallows kernel to obtain explicit convergence rates of $O(1/n)$, improving on $O(1/sqrt{n})$ for plain Monte Carlo. The RKHS perspective also leads to quasi Monte Carlo type error bounds, with a tractable discrepancy measure defined on permutations. Second, we exploit connections between the hypersphere $mathbb{S}^{d-2}$ and permutations to create practical algorithms for generating permutation samples with good properties. Experiments show the above techniques provide significant improvements for Shapley value estimates over existing methods, converging to a smaller RMSE in the same number of model evaluations.
This paper proposes a canonical-correlation-based filter method for feature selection. The sum of squared canonical correlation coefficients is adopted as the feature ranking criterion. The proposed method boosts the computational speed of the rankin g criterion in greedy search. The supporting theorems developed for the feature selection method are fundamental to the understanding of the canonical correlation analysis. In empirical studies, a synthetic dataset is used to demonstrate the speed advantage of the proposed method, and eight real datasets are applied to show the effectiveness of the proposed feature ranking criterion in both classification and regression. The results show that the proposed method is considerably faster than the definition-based method, and the proposed ranking criterion is competitive compared with the seven mutual-information-based criteria.
Online feature selection has been an active research area in recent years. We propose a novel diverse online feature selection method based on Determinantal Point Processes (DPP). Our model aims to provide diverse features which can be composed in ei ther a supervised or unsupervised framework. The framework aims to promote diversity based on the kernel produced on a feature level, through at most three stages: feature sampling, local criteria and global criteria for feature selection. In the feature sampling, we sample incoming stream of features using conditional DPP. The local criteria is used to assess and select streamed features (i.e. only when they arrive), we use unsupervised scale invariant methods to remove redundant features and optionally supervised methods to introduce label information to assess relevant features. Lastly, the global criteria uses regularization methods to select a global optimal subset of features. This three stage procedure continues until there are no more features arriving or some predefined stopping condition is met. We demonstrate based on experiments conducted on that this approach yields better compactness, is comparable and in some instances outperforms other state-of-the-art online feature selection methods.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m odels across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا