ﻻ يوجد ملخص باللغة العربية
For feature selection and related problems, we introduce the notion of classification game, a cooperative game, with features as players and hinge loss based characteristic function and relate a features contribution to Shapley value based error apportioning (SVEA) of total training error. Our major contribution is ($star$) to show that for any dataset the threshold 0 on SVEA value identifies feature subset whose joint interactions for label prediction is significant or those features that span a subspace where the data is predominantly lying. In addition, our scheme ($star$) identifies the features on which Bayes classifier doesnt depend but any surrogate loss function based finite sample classifier does; this contributes to the excess $0$-$1$ risk of such a classifier, ($star$) estimates unknown true hinge risk of a feature, and ($star$) relate the stability property of an allocation and negative valued SVEA by designing the analogue of core of classification game. Due to Shapley values computationally expensive nature, we build on a known Monte Carlo based approximation algorithm that computes characteristic function (Linear Programs) only when needed. We address the potential sample bias problem in feature selection by providing interval estimates for SVEA values obtained from multiple sub-samples. We illustrate all the above aspects on various synthetic and real datasets and show that our scheme achieves better results than existing recursive feature elimination technique and ReliefF in most cases. Our theoretically grounded classification game in terms of well defined characteristic function offers interpretability (which we formalize in terms of final task) and explainability of our framework, including identification of important features.
Game-theoretic formulations of feature importance have become popular as a way to explain machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some
Game-theoretic attribution techniques based on Shapley values are used extensively to interpret black-box machine learning models, but their exact calculation is generally NP-hard, requiring approximation methods for non-trivial models. As the comput
This paper proposes a canonical-correlation-based filter method for feature selection. The sum of squared canonical correlation coefficients is adopted as the feature ranking criterion. The proposed method boosts the computational speed of the rankin
Online feature selection has been an active research area in recent years. We propose a novel diverse online feature selection method based on Determinantal Point Processes (DPP). Our model aims to provide diverse features which can be composed in ei
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m