ترغب بنشر مسار تعليمي؟ اضغط هنا

Diverse Online Feature Selection

105   0   0.0 ( 0 )
 نشر من قبل Chapman Siu
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Online feature selection has been an active research area in recent years. We propose a novel diverse online feature selection method based on Determinantal Point Processes (DPP). Our model aims to provide diverse features which can be composed in either a supervised or unsupervised framework. The framework aims to promote diversity based on the kernel produced on a feature level, through at most three stages: feature sampling, local criteria and global criteria for feature selection. In the feature sampling, we sample incoming stream of features using conditional DPP. The local criteria is used to assess and select streamed features (i.e. only when they arrive), we use unsupervised scale invariant methods to remove redundant features and optionally supervised methods to introduce label information to assess relevant features. Lastly, the global criteria uses regularization methods to select a global optimal subset of features. This three stage procedure continues until there are no more features arriving or some predefined stopping condition is met. We demonstrate based on experiments conducted on that this approach yields better compactness, is comparable and in some instances outperforms other state-of-the-art online feature selection methods.

قيم البحث

اقرأ أيضاً

Citizens assemblies need to represent subpopulations according to their proportions in the general population. These large committees are often constructed in an online fashion by contacting people, asking for the demographic features of the voluntee rs, and deciding to include them or not. This raises a trade-off between the number of people contacted (and the incurring cost) and the representativeness of the committee. We study three methods, theoretically and experimentally: a greedy algorithm that includes volunteers as long as proportionality is not violated; a non-adaptive method that includes a volunteer with a probability depending only on their features, assuming that the joint feature distribution in the volunteer pool is known; and a reinforcement learning based approach when this distribution is not known a priori but learnt online.
This paper proposes a canonical-correlation-based filter method for feature selection. The sum of squared canonical correlation coefficients is adopted as the feature ranking criterion. The proposed method boosts the computational speed of the rankin g criterion in greedy search. The supporting theorems developed for the feature selection method are fundamental to the understanding of the canonical correlation analysis. In empirical studies, a synthetic dataset is used to demonstrate the speed advantage of the proposed method, and eight real datasets are applied to show the effectiveness of the proposed feature ranking criterion in both classification and regression. The results show that the proposed method is considerably faster than the definition-based method, and the proposed ranking criterion is competitive compared with the seven mutual-information-based criteria.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m odels across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.
Motivated by a natural problem in online model selection with bandit information, we introduce and analyze a best arm identification problem in the rested bandit setting, wherein arm expected losses decrease with the number of times the arm has been played. The shape of the expected loss functions is similar across arms, and is assumed to be available up to unknown parameters that have to be learned on the fly. We define a novel notion of regret for this problem, where we compare to the policy that always plays the arm having the smallest expected loss at the end of the game. We analyze an arm elimination algorithm whose regret vanishes as the time horizon increases. The actual rate of convergence depends in a detailed way on the postulated functional form of the expected losses. Unlike known model selection efforts in the recent bandit literature, our algorithm exploits the specific structure of the problem to learn the unknown parameters of the expected loss function so as to identify the best arm as quickly as possible. We complement our analysis with a lower bound, indicating strengths and limitations of the proposed solution.
The goal of controlled feature selection is to discover the features a response depends on while limiting the proportion of false discoveries to a predefined level. Recently, multiple methods have been proposed that use deep learning to generate knoc koffs for controlled feature selection through the Model-X knockoff framework. We demonstrate, however, that these methods often fail to control the false discovery rate (FDR). There are two reasons for this shortcoming. First, these methods often learn inaccurate models of features. Second, the swap property, which is required for knockoffs to be valid, is often not well enforced. We propose a new procedure called FlowSelect that remedies both of these problems. To more accurately model the features, FlowSelect uses normalizing flows, the state-of-the-art method for density estimation. To circumvent the need to enforce the swap property, FlowSelect uses a novel MCMC-based procedure to directly compute p-values for each feature. Asymptotically, FlowSelect controls the FDR exactly. Empirically, FlowSelect controls the FDR well on both synthetic and semi-synthetic benchmarks, whereas competing knockoff-based approaches fail to do so. FlowSelect also demonstrates greater power on these benchmarks. Additionally, using data from a genome-wide association study of soybeans, FlowSelect correctly infers the genetic variants associated with specific soybean traits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا