ﻻ يوجد ملخص باللغة العربية
Spectral measurements of boundary localized in-gap modes are commonly used to identify topological insulators via the bulk-boundary correspondence. This can be extended to high-order topological insulators for which the most striking feature is in-gap modes at boundaries of higher co-dimension, e.g. the corners of a 2D material. Unfortunately, this spectroscopic approach is not always viable since the energies of the topological modes are not protected and they can often overlap the bulk bands, leading to potential misidentification. Since the topology of a material is a collective product of all its eigenmodes, any conclusive indicator of topology must instead be a feature of its bulk band structure, and should not rely on specific eigen-energies. For many topological crystalline insulators the key topological feature is fractional charge density arising from the filled bulk bands, but measurements of charge distributions have not been accessible to date. In this work, we experimentally measure boundary-localized fractional charge density of two distinct 2D rotationally-symmetric metamaterials, finding 1/4 and 1/3 fractionalization. We then introduce a new topological indicator based on collective phenomenology that allows unambiguous identification of higher-order topology, even in the absence of in-gap states. Finally, we demonstrate the higher-order bulk-boundary correspondence associated with this fractional feature by using boundary deformations to spectrally isolate localized corner modes where they were previously unobservable.
The recent discoveries of higher-order topological insulators (HOTIs) have shifted the paradigm of topological materials, which was previously limited to topological states at boundaries of materials, to those at boundaries of boundaries, such as cor
Photonic crystals have provided a controllable platform to examine excitingly new topological states in open systems. In this work, we reveal photonic topological corner states in a photonic graphene with mirror-symmetrically patterned gain and loss.
Generally, the topological corner state in two-dimensional second-order topological insulator (2D SOTI) is equivalent to the well-known domain wall state, originated from the mass-inversion between two adjacent edges with phase shift of pi. In this w
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo
We report the theoretical discovery and characterization of higher-order Floquet topological phases dynamically generated in a periodically driven system with mirror symmetries. We demonstrate numerically and analytically that these phases support lo