ﻻ يوجد ملخص باللغة العربية
Photonic crystals have provided a controllable platform to examine excitingly new topological states in open systems. In this work, we reveal photonic topological corner states in a photonic graphene with mirror-symmetrically patterned gain and loss. Such a nontrivial Wannier-type higher-order topological phase is achieved through solely tuning on-site gain/loss strengths, which leads to annihilation of the two valley Dirac cones at a time-reversal-symmetric point, as the gain and loss change the effective tunneling between adjacent sites. We find that the symmetry-protected photonic corner modes exhibit purely imaginary energies and the role of the Wannier center as the topological invariant is illustrated. For experimental considerations, we also examine the topological interface states near a domain wall. Our work introduces an interesting platform for non-Hermiticity-induced photonic higher-order topological insulators, which, with current experimental technologies, can be readily accessed.
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo
We report the theoretical discovery and characterization of higher-order Floquet topological phases dynamically generated in a periodically driven system with mirror symmetries. We demonstrate numerically and analytically that these phases support lo
The recently established paradigm of higher-order topological states of matter has shown that not only, as previously thought, edge and surface states but also states localised to corners can have robust and exotic properties. Here we report on the e
Recently, higher-order topological phases that do not obey the usual bulk-edge correspondence principle have been introduced in electronic insulators and brought into classical systems, featuring with in-gap corner/hinge states. So far, second-order
Spectral measurements of boundary localized in-gap modes are commonly used to identify topological insulators via the bulk-boundary correspondence. This can be extended to high-order topological insulators for which the most striking feature is in-ga