ﻻ يوجد ملخص باللغة العربية
Generally, the topological corner state in two-dimensional second-order topological insulator (2D SOTI) is equivalent to the well-known domain wall state, originated from the mass-inversion between two adjacent edges with phase shift of pi. In this work, go beyond this conventional physical picture, we report a fractional mass-kink induced 2D SOTI in monolayer FeSe with canted checkerboard antiferromagnetic (AFM) order by analytic model and first-principles calculations. The canted spin associated in-plane Zeeman field can gap out the quantum spin Hall edge state of FeSe, forming a fractional mass-kink with phase shift of pi/2 at the rectangular corner, and generating an in-gap topological corner state with fractional charge of e/4. Moreover, the topological corner state is robust to local perturbation, existing in both naturally and non-naturally cleaved corners, regardless of the edge orientation. Our results not only demonstrate a material system to realize the unique 2D AFM SOTI, but also pave a new way to design the higher-order topological states from fractional mass-kink with arbitrary phase shift, which are expected to draw immediate experimental attention.
Spectral measurements of boundary localized in-gap modes are commonly used to identify topological insulators via the bulk-boundary correspondence. This can be extended to high-order topological insulators for which the most striking feature is in-ga
The recent discoveries of higher-order topological insulators (HOTIs) have shifted the paradigm of topological materials, which was previously limited to topological states at boundaries of materials, to those at boundaries of boundaries, such as cor
Topological phases of matter have been extensively studied for their intriguing bulk and edge properties. Recently, higher-order topological insulators with boundary states that are two or more dimensions lower than the bulk states, have been propose
Topological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface state