ﻻ يوجد ملخص باللغة العربية
A resolvent-based reduced-order representation is used to capture time-averaged second-order statistics in turbulent channel flow. The recently-proposed decomposition of the resolvent operator into two distinct families related to the Orr-Sommerfeld and Squire operators [K. Rosenberg and B. J. McKeon, Efficient representation of exact coherent states of the Navier-Stokes equations using resolvent analysis, Fluid Dynamics Research 51, 011401 (2019)] results in dramatic improvement in the ability to match all components of the energy spectra and the $uv$ cospectrum. The success of the new representation relies on the ability of the Squire modes to compete with the vorticity generated by Orr-Sommerfeld modes, which is demonstrated by decomposing the statistics into contributions from each family. It is then shown that this competition can be used to infer a phase relationship between the two sets of modes. Additionally, the relative Reynolds number scalings for the two families of resolvent weights are derived for the universal classes of resolvent modes presented by Moarref et al. [R. Moarref, A. S. Sharma, J. A. Tropp, and B. J. McKeon, Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels, Journal of Fluid Mechanics 734, 275 (2013)]. These developments can be viewed as a starting point for further modeling efforts to quantify nonlinear interactions in wall-bounded turbulence.
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF
We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastovi
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale be
Harmonic oscillations of the walls of a turbulent plane channel flow are studied by direct numerical simulations to improve our understanding of the physical mechanism for skin-friction drag reduction. The simulations are carried out at constant pres
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfun