ﻻ يوجد ملخص باللغة العربية
Recently, it was observed that spatially-coupled LDPC code ensembles approach the Shannon capacity for a class of binary-input memoryless symmetric (BMS) channels. The fundamental reason for this was attributed to a threshold saturation phenomena derived by Kudekar, Richardson and Urbanke. In particular, it was shown that the belief propagation (BP) threshold of the spatially coupled codes is equal to the maximum a posteriori (MAP) decoding threshold of the underlying constituent codes. In this sense, the BP threshold is saturated to its maximum value. Moreover, it has been empirically observed that the same phenomena also occurs when transmitting over more general classes of BMS channels. In this paper, we show that the effect of spatial coupling is not restricted to the realm of channel coding. The effect of coupling also manifests itself in compressed sensing. Specifically, we show that spatially-coupled measurement matrices have an improved sparsity to sampling threshold for reconstruction algorithms based on verification decoding. For BP-based reconstruction algorithms, this phenomenon is also tested empirically via simulation. At the block lengths accessible via simulation, the effect is quite small and it seems that spatial coupling is not providing the gains one might expect. Based on the threshold analysis, however, we believe this warrants further study.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble
In most compressive sensing problems l1 norm is used during the signal reconstruction process. In this article the use of entropy functional is proposed to approximate the l1 norm. A modified version of the entropy functional is continuous, different
We consider the question of estimating a real low-complexity signal (such as a sparse vector or a low-rank matrix) from the phase of complex random measurements. We show that in this phase-only compressive sensing (PO-CS) scenario, we can perfectly r
Quantized compressive sensing (QCS) deals with the problem of coding compressive measurements of low-complexity signals with quantized, finite precision representations, i.e., a mandatory process involved in any practical sensing model. While the res
This paper considers solving the unconstrained $ell_q$-norm ($0leq q<1$) regularized least squares ($ell_q$-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the