ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental quantification of coherence of a tunable quantum detector

92   0   0.0 ( 0 )
 نشر من قبل Fei-Xiang Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from the measurement statistics. Based on a recently developed resource theory of quantum operations, here we quantify experimentally the ability of a typical quantum-optical detector, the weak-field homodyne detector, to detect coherence. We derive an improved algorithm for quantum detector tomography and apply it to reconstruct the positive-operator-valued measures (POVMs) of the detector in different configurations. The reconstructed POVMs are then employed to evaluate how well the detector can detect coherence using two computable measures. As the first experimental investigation of quantum measurements from a resource theoretical perspective, our work sheds new light on the rigorous evaluation of the performance of a quantum measurement apparatus.



قيم البحث

اقرأ أيضاً

Quantum coherence is a fundamental property of quantum systems, separating quantum from classical physics. Recently, there has been significant interest in the characterization of quantum coherence as a resource, investigating how coherence can be ex tracted and used for quantum technological applications. In this work we review the progress of this research, focusing in particular on recent experimental efforts. After a brief review of the underlying theory we discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems. We then consider experimental detection and quantification of coherence, experimental state conversion and coherence distillation, and experiments investigating the dynamics of quantum coherence. We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements. Experimental efforts on multipartite and multilevel coherence are also discussed.
The protection of qubit coherence is an essential task in order to build a practical quantum computer able to manipulate, store and read quantum information with a high degree of fidelity. Recently, it has been proposed to increase the operation time of a qubit by means of strong pulses to achieve a dynamical decoupling of the qubit from its environment. We propose and demonstrate a simple and highly efficient alternative pulse protocol based on Floquet modes, which increases the decoherence time in a number of materials with different spin Hamiltonians and environments. We demonstrate the regime $T_2approx T_1$, thus providing a route for spin qubits and spin ensembles to be used in quantum information processing and storage.
Correlations between different partitions of quantum systems play a central role in a variety of many-body quantum systems, and they have been studied exhaustively in experimental and theoretical research. Here, we investigate dynamical correlations in the time evolution of multiple parts of a composite quantum system. A rigorous measure to quantify correlations in quantum dynamics based on a full tomographic reconstruction of the quantum process has been introduced recently [A. Rivas et al., New Journal of Physics, 17(6) 062001 (2015).]. In this work, we derive a lower bound for this correlation measure, which does not require full knowledge of the quantum dynamics. Furthermore we also extend the correlation measure to multipartite systems. We directly apply the developed methods to a trapped ion quantum information processor to experimentally characterize the correlations in quantum dynamics for two- and four-qubit systems. The method proposed and demonstrated in this work is scalable, platform-independent and applicable to other composite quantum systems and quantum information processing architectures. We apply the method to estimate spatial correlations in environmental noise processes, which are crucial for the performance of quantum error correction procedures.
Besides quantum entanglement and steering, quantum coherence has also been identified as a useful quantum resource in quantum information. It is important to investigate the evolution of quantum coherence in practical quantum channels. In this paper, we experimentally quantify the quantum coherence of a squeezed state and a Gaussian Einstein-Podolsky-Rosen (EPR) entangled state transmitted in Gaussian thermal noise channel, respectively. By reconstructing the covariance matrix of the transmitted states, quantum coherence of these Gaussian states is quantified by calculating the relative entropy. We show that quantum coherence of the squeezed state and the Gaussian EPR entangled state is robust against loss and noise in a quantum channel, which is different from the properties of squeezing and Gaussian entanglement. Our experimental results pave the way for application of Gaussian quantum coherence in lossy and noisy environments.
Photon indistinguishability plays a fundamental role in information processing, with applications such as linear-optical quantum computation and metrology. It is then necessary to develop appropriate tools to quantify the amount of this resource in a multiparticle scenario. Here we report a four-photon experiment in a linear-optical interferometer designed to simultaneously estimate the degree of indistinguishability between three pairs of photons. The interferometer design dispenses with the need of heralding for parametric down-conversion sources, resulting in an efficient and reliable optical scheme. We then use a recently proposed theoretical framework to quantify genuine four-photon indistinguishability, as well as to obtain bounds on three unmeasured two-photon overlaps. Our findings are in high agreement with the theory, and represent a new resource-effective technique for the characterization of multiphoton interference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا