ترغب بنشر مسار تعليمي؟ اضغط هنا

How stellar rotation shapes the colour magnitude diagram of the massive intermediate-age star cluster NGC 1846

152   0   0.0 ( 0 )
 نشر من قبل Sebastian Kamann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of stellar rotation in the massive 1.5 Gyr old cluster NGC 1846 in the Large Magellanic Cloud. Similar to other clusters at this age, NGC 1846 shows an extended main sequence turn-off (eMSTO), and previous photometric studies have suggested it could be bimodal. In this study, we use MUSE integral-field spectroscopy to measure the projected rotational velocities (vsini) of around 1400 stars across the eMSTO and along the upper main sequence of NGC 1846. We measure vsini values up to ~250 km/s and find a clear relation between the vsini of a star and its location across the eMSTO. Closer inspection of the distribution of rotation rates reveals evidence for a bimodal distribution, with the fast rotators centred around vsini = 140 km/s and the slow rotators centred around vsini = 60 km/s. We further observe a lack of fast rotating stars along the photometric binary sequence of NGC 1846, confirming results from the field that suggest that tidal interactions in binary systems can spin down stars. However, we do not detect a significant difference in the binary fractions of the fast and slowly rotating sub-populations. Finally, we report on the serendipitous discovery of a planetary nebula associated with NGC 1846.



قيم البحث

اقرأ أيضاً

Intermediate-age star clusters in the LMC present extended main sequence turnoffs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequenc es can also be produced by ill-characterized stellar variability. Here we present Gemini-S/GMOS time series observations of the intermediate-age cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects we estimate the number of Delta Scuti belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single Delta Scuti within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of Delta Scuti makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results are a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its Delta Scuti population.
Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar m ain sequence (MS) exhibits a kink, due to opacity effects in M dwarfs, such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs - 47Tuc, M4, NGC2808, and NGC6752 - for which the data are deep enough to fully sample the low-mass MS, reaching at least ~ 2 mag below the kink. We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are respectively 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are sigma ~ 0.7 - 1.1 Gyr. Our results suggest that the near-IR MS kink, combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope.
166 - David G. Turner 2011
Existing photometry for NGC 2264 tied to the Johnson and Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walkers observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of E(B-V)=0.075+-0.003 s.e. and Vo-Mv=9.45+-0.03 s.e. (d=777+-12 pc) are obtained, in conjunction with an inferred cluster age of ~5.5x10^6 yr from pre-main-sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late-type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B-type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature.
In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.
This work presents the first long-term photometric variability survey of the intermediate-age open cluster NGC 559. Time-series V band photometric observations on 40 nights taken over more than three years with three different telescopes are analyzed to search for variable stars in the cluster. We investigate the data for the periodicity analysis and reveal 70 variable stars including 67 periodic variables in the target field, all of them are newly discovered. The membership analysis of the periodic variables reveal that 30 of them belong to the cluster and remaining 37 are identified as field variables. Out of the 67 periodic variables, 48 are short-period (P<1 day) variables and 19 are long-period (P>1 day) variables. The variable stars have periodicity between 3 hours to 41 days and their brightness ranges from V = 10.9 to 19.3 mag. The periodic variables belonging to the cluster are then classified into different variability types on the basis of observational properties such as shape of the light curves, periods, amplitudes, as well as their positions in the Hertzsprung-Russell (H-R) diagram. As a result, we identify one Algol type eclipsing binary, one possible blue straggler star, 3 slowly pulsating B type stars, 5 rotational variables, 11 non-pulsating variables, 2 FKCOM variables and remaining 7 are characterized as miscellaneous variables. We also identify three Eclipsing Binary stars (EBs) belonging to the field star population. The PHOEBE package is used to analyse the light curve of all four EBs in order to determine the parameters of the binary systems such as masses, temperatures and radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا