ترغب بنشر مسار تعليمي؟ اضغط هنا

The Color-Magnitude Diagram of NGC 2264

116   0   0.0 ( 0 )
 نشر من قبل David Turner Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David G. Turner




اسأل ChatGPT حول البحث

Existing photometry for NGC 2264 tied to the Johnson and Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walkers observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of E(B-V)=0.075+-0.003 s.e. and Vo-Mv=9.45+-0.03 s.e. (d=777+-12 pc) are obtained, in conjunction with an inferred cluster age of ~5.5x10^6 yr from pre-main-sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late-type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B-type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature.

قيم البحث

اقرأ أيضاً

We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turn-off level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and derive physical parameters of the cluster therefrom. We discuss previous attempts to derive a reddening value for the cluster, and argue in favor of a value E(B-V) = 0.57 +/- 0.02, which is significantly higher than indicated by either the Burstein & Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of Delta E(B-V) ~ 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 +/- 0.07 in the Zinn & West scale and [Fe/H] = -1.28 +/- 0.08 in the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function bump and the horizontal branch (HB) morphology. We compare the NGC 6402 ridgeline with the one for NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age, to within the uncertainties -- although the possibility that M14 may be slighlty older cannot be ruled out.
Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar m ain sequence (MS) exhibits a kink, due to opacity effects in M dwarfs, such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs - 47Tuc, M4, NGC2808, and NGC6752 - for which the data are deep enough to fully sample the low-mass MS, reaching at least ~ 2 mag below the kink. We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are respectively 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are sigma ~ 0.7 - 1.1 Gyr. Our results suggest that the near-IR MS kink, combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope.
We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color--magnitude information. This is achieved with a data driven model of the color--magnitude diagram, not relying on stellar models but instead on the relative abundances of stars in color--magnitude cells, which are inferred from very noisy magnitudes and parallaxes. While the resulting noise-deconvolved color--magnitude diagram can be useful for a range of applications, we focus on deriving improved stellar distance estimates relying on both parallax and photometric information. We demonstrate the efficiency of this approach on the 1.4 million stars of the Gaia TGAS sample that also have APASS magnitudes. Our hierarchical model has 4~million parameters in total, most of which are marginalized out numerically or analytically. We find that distance estimates are significantly improved for the noisiest parallaxes and densest regions of the color--magnitude diagram. In particular, the average distance signal-to-noise ratio and uncertainty improve by 19~percent and 36~percent, respectively, with 8~percent of the objects improving in SNR by a factor greater than 2. This computationally efficient approach fully accounts for both parallax and photometric noise, and is a first step towards a full hierarchical probabilistic model of the Gaia data.
123 - Izumi Hachisu 2016
We have examined the outburst tracks of 40 novae in the color-magnitude diagram (intrinsic B-V color versus absolute V magnitude). After reaching the optical maximum, each nova generally evolves toward blue from the upper-right to the lower-left and then turns back toward the right. The 40 tracks are categorized into one of six templates: very fast nova V1500 Cyg; fast novae V1668 Cyg, V1974 Cyg, and LV Vul; moderately fast nova FH Ser; and very slow nova PU Vul. These templates are located from the left (blue) to the right (red) in this order, depending on the envelope mass and nova speed class. A bluer nova has a less massive envelope and faster nova speed class. In novae with multiple peaks, the track of the first decay is more red than that of the second (or third) decay, because a large part of the envelope mass had already been ejected during the first peak. Thus, our newly obtained tracks in the color-magnitude diagram provide useful information to understand the physics of classical novae. We also found that the absolute magnitude at the beginning of the nebular phase is almost similar among various novae. We are able to determine the absolute magnitude (or distance modulus) by fitting the track of a target nova to the same classification of a nova with a known distance. This method for determining nova distance has been applied to some recurrent novae and their distances have been recalculated.
Many problems in contemporary astrophysics---from understanding the formation of black holes to untangling the chemical evolution of galaxies---rely on knowledge about binary stars. This, in turn, depends on discovery and characterization of binary c ompanions for large numbers of different kinds of stars in different chemical and dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars with (typically) few observational epochs, which allows binary discovery but makes orbital characterization challenging. We use a custom Monte Carlo sampler (The Joker) to perform discovery and characterization of binary systems through radial-velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We use it to generate posterior samplings in Keplerian parameters for 232,531 sources released in APOGEE Data Release 16. Our final catalog contains 19,635 high-confidence close-binary (P < few years, a < few AU) systems that show interesting relationships between binary occurrence rate and location in the color-magnitude diagram. We find notable faint companions at high masses (black-hole candidates), at low masses (substellar candidates), and at very close separations (mass-transfer candidates). We also use the posterior samplings in a (toy) hierarchical inference to measure the long-period binary-star eccentricity distribution. We release the full set of posterior samplings for the entire parent sample of 232,531 stars. This set of samplings involves no heuristic discovery threshold and therefore can be used for myriad statistical purposes, including hierarchical inferences about binary-star populations and sub-threshold searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا