ﻻ يوجد ملخص باللغة العربية
Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar main sequence (MS) exhibits a kink, due to opacity effects in M dwarfs, such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs - 47Tuc, M4, NGC2808, and NGC6752 - for which the data are deep enough to fully sample the low-mass MS, reaching at least ~ 2 mag below the kink. We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are respectively 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are sigma ~ 0.7 - 1.1 Gyr. Our results suggest that the near-IR MS kink, combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope.
We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turn-off level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD)
We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color--magnitude information. This is achieved with a data driven model of the color--magnitude diagram, not relying on stellar models but instead
Globular Clusters (GCs) in the Milky Way represent the ideal laboratory to establish the age of the oldest stellar populations and to measure the color-magnitude relation of stars. Infrared (IR) photometry of these objects provides a new opportunity
Existing photometry for NGC 2264 tied to the Johnson and Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and
We present a detailed study of stellar rotation in the massive 1.5 Gyr old cluster NGC 1846 in the Large Magellanic Cloud. Similar to other clusters at this age, NGC 1846 shows an extended main sequence turn-off (eMSTO), and previous photometric stud