ﻻ يوجد ملخص باللغة العربية
Stochastic differential equations and stochastic dynamics are good models to describe stochastic phenomena in real world. In this paper, we study N independent stochastic processes Xi(t) with real entries and the processes are determined by the stochastic differential equations with drift term relying on some random effects. We obtain the Girsanov-type formula of the stochastic differential equation driven by Fractional Brownian Motion through kernel transformation. Under some assumptions of the random effect, we estimate the parameter estimators by the maximum likelihood estimation and give some numerical simulations for the discrete observations. Results show that for the different H, the parameter estimator is closer to the true value as the amount of data increases.
We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.
We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on i
In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condit