ترغب بنشر مسار تعليمي؟ اضغط هنا

Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections

85   0   0.0 ( 0 )
 نشر من قبل Hanwu Li
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condition is proposed to derive the uniqueness and existence of the solutions. The uniqueness can be proved by a priori estimates and the existence is obtained via a penalization method.



قيم البحث

اقرأ أيضاً

In this paper, we investigate suffcient and necessary conditions for the comparison theorem of neutral stochastic functional differential equations driven by G-Brownian motion (G-NSFDE). Moreover, the results extend the ones in the linear expectation case [1] and nonlinear expectation framework [8].
In this paper we study the stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs for short). We extend the notion of conditional $G$-expectation from deterministic time to the more general optional time situation. Then, via this c onditional expectation, we develop the strong Markov property for $G$-SDEs. In particular, we obtain the strong Markov property for $G$-Brownian motion. Some applications including the reflection principle for $G$-Brownian motion are also provided.
125 - Hanwu Li 2020
In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this construction is that the convergence sequence is monotone, which is helpful to establish the relation between doubly reflected G-BSDEs and double obstacle fully nonlinear partial differential equations.
212 - Yong Ren , Xiliang Fan 2008
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with L{e}vy process. We obtain the existence and uniqueness of solutions to these equations by means of the penalization method. As its application, we give a probabilistic interpretation for the solutions of a class of partial differential-integral inclusions.
464 - Shige Peng , Zhe Yang 2009
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا