ﻻ يوجد ملخص باللغة العربية
Combinatorial optimization problems arise in a wide range of applications from diverse domains. Many of these problems are NP-hard and designing efficient heuristics for them requires considerable time and experimentation. On the other hand, the number of optimization problems in the industry continues to grow. In recent years, machine learning techniques have been explored to address this gap. We propose a framework for leveraging machine learning techniques to scale-up exact combinatorial optimization algorithms. In contrast to the existing approaches based on deep-learning, reinforcement learning and restricted Boltzmann machines that attempt to directly learn the output of the optimization problem from its input (with limited success), our framework learns the relatively simpler task of pruning the elements in order to reduce the size of the problem instances. In addition, our framework uses only interpretable learning models based on intuitive features and thus the learning process provides deeper insights into the optimization problem and the instance class, that can be used for designing better heuristics. For the classical maximum clique enumeration problem, we show that our framework can prune a large fraction of the input graph (around 99 % of nodes in case of sparse graphs) and still detect almost all of the maximum cliques. This results in several fold speedups of state-of-the-art algorithms. Furthermore, the model used in our framework highlights that the chi-squared value of neighborhood degree has a statistically significant correlation with the presence of a node in a maximum clique, particularly in dense graphs which constitute a significant challenge for modern solvers. We leverage this insight to design a novel heuristic for this problem outperforming the state-of-the-art. Our heuristic is also of independent interest for maximum clique detection and enumeration.
We initiate the study of fine-grained completeness theorems for exact and approximate optimization in the polynomial-time regime. Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova, Williams, TALG 2019
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing meth
Maintaining and updating shortest paths information in a graph is a fundamental problem with many applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to perform the computations on a sparse skeleton of t
Many real-world problems can be reduced to combinatorial optimization on a graph, where the subset or ordering of vertices that maximize some objective function must be found. With such tasks often NP-hard and analytically intractable, reinforcement