ترغب بنشر مسار تعليمي؟ اضغط هنا

Reframing astronomical research through an anticolonial lens -- for TMT and beyond

107   0   0.0 ( 0 )
 نشر من قبل Hilding Neilson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper explains that professional astronomy has benefited from settler colonial white supremacist patriarchy. We explicate the impact that this has had on communities which are not the beneficiaries of colonialism and white supremacy. We advocate for astronomers to reject these benefits in the future, and we make proposals regarding the steps involved in rejecting colonialist white supremacys benefits. We center ten recommendations on the timely issue of what to do about the Thirty Meter Telescope (TMT) on Maunakea in Hawaii. This paper is written in solidarity with and support of efforts by Native Hawaiian scientists (e.g. Kahanamoku et al. 2019).


قيم البحث

اقرأ أيضاً

208 - V. A. R. M. Ribeiro , 2013
Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed articles, research research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the SAO/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a Gross National Income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in `astronomy development with a culture of research publishing. We also propose that for a country to develop astronomy it should invest in outside expert visits, send their staff abroad to study and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.
The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the la te 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.
The project Novel Astronomical Instrumentation through photonic Reformatting is a DFG-funded collaboration to exploit the recognized potential of photonics solutions for a radically new approach to astronomical instrumentation for optical/infrared hi gh precision spectroscopy and high angular resolution imaging. We present a project overview and initial development results from our Adaptive Optics-photonic test bed, Ultrafast Laser Inscribed waveguides for interferometric beam combination and 3D printing structures for astronomical instrumentation. The project is expected to lead to important technological breakthroughs facilitating uniquely functionality and technical solutions for the next generation of instrumentation.
The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard is, however, showing its age. Developed in the la te 1970s the FITS authors made a number of implementation choices for the format that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not appreciate the challenges which we would be facing today in astronomical computing. Difficulties we now face include, but are not limited to, having to address the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets and the need to capture significantly more complex metadata and data relationships. There are members of the community today who find some (or all) of these limitations unworkable, and have decided to move ahead with storing data in other formats. This reaction should be taken as a wakeup call to the FITS community to make changes in the FITS standard, or to see its usage fall. In this paper we detail some selected important problems which exist within the FITS standard today. It is not our intention to prescribe specific remedies to these issues; rather, we hope to call attention of the FITS and greater astronomical computing communities to these issues in the hopes that it will spur action to address them.
We present an interactive IDL program for viewing and analyzing astronomical spectra in the context of modern imaging surveys. SpecPros interactive design lets the user simultaneously view spectroscopic, photometric, and imaging data, allowing for ra pid object classification and redshift determination. The spectroscopic redshift can be determined with automated cross-correlation against a variety of spectral templates or by overlaying common emission and absorption features on the 1-D and 2-D spectra. Stamp images as well as the spectral energy distribution (SED) of a source can be displayed with the interface, with the positions of prominent photometric features indicated on the SED plot. Results can be saved to file from within the interface. In this paper we discuss key program features and provide an overview of the required data formats.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا