ترغب بنشر مسار تعليمي؟ اضغط هنا

SpecPro: An Interactive IDL Program for Viewing and Analyzing Astronomical Spectra

73   0   0.0 ( 0 )
 نشر من قبل Daniel Masters
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an interactive IDL program for viewing and analyzing astronomical spectra in the context of modern imaging surveys. SpecPros interactive design lets the user simultaneously view spectroscopic, photometric, and imaging data, allowing for rapid object classification and redshift determination. The spectroscopic redshift can be determined with automated cross-correlation against a variety of spectral templates or by overlaying common emission and absorption features on the 1-D and 2-D spectra. Stamp images as well as the spectral energy distribution (SED) of a source can be displayed with the interface, with the positions of prominent photometric features indicated on the SED plot. Results can be saved to file from within the interface. In this paper we discuss key program features and provide an overview of the required data formats.

قيم البحث

اقرأ أيضاً

74 - Joel D. Hartman 2016
This paper describes the VARTOOLS program, which is an open-source command-line utility, written in C, for analyzing astronomical time-series data, especially light curves. The program provides a general-purpose set of tools for processing light curv es including signal identification, filtering, light curve manipulation, time
AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the fields immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless
We present CosmoHub (https://cosmohub.pic.es), a web application based on Hadoop to perform interactive exploration and distribution of massive cosmological datasets. Recent Cosmology seeks to unveil the nature of both dark matter and dark energy map ping the large-scale structure of the Universe, through the analysis of massive amounts of astronomical data, progressively increasing during the last (and future) decades with the digitization and automation of the experimental techniques. CosmoHub, hosted and developed at the Port dInformacio Cientifica (PIC), provides support to a worldwide community of scientists, without requiring the end user to know any Structured Query Language (SQL). It is serving data of several large international collaborations such as the Euclid space mission, the Dark Energy Survey (DES), the Physics of the Accelerating Universe Survey (PAUS) and the Marenostrum Institut de Ci`encies de lEspai (MICE) numerical simulations. While originally developed as a PostgreSQL relational database web frontend, this work describes the current version of CosmoHub, built on top of Apache Hive, which facilitates scalable reading, writing and managing huge datasets. As CosmoHubs datasets are seldomly modified, Hive it is a better fit. Over 60 TiB of catalogued information and $50 times 10^9$ astronomical objects can be interactively explored using an integrated visualization tool which includes 1D histogram and 2D heatmap plots. In our current implementation, online exploration of datasets of $10^9$ objects can be done in a timescale of tens of seconds. Users can also download customized subsets of data in standard formats generated in few minutes.
145 - Peter Erwin 2014
I describe a new, open-source astronomical image-fitting program called Imfit, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriente d design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-S/N galaxy images using chi^2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.
We present a new software tool to enable astronomers to easily compare observations of emission line ratios with those determined by photoionization and shock models, ITERA, the IDL Tool for Emission-line Ratio Analysis. This tool can plot ratios of emission lines predicted by models and allows for comparison of observed line ratios against grids of these models selected from model libraries associated with the tool. We provide details of the libraries of standard photoionization and shock models available with ITERA, and, in addition, present three example emission line ratio diagrams covering a range of wavelengths to demonstrate the capabilities of ITERA. ITERA, and associated libraries, is available from url{http://www.brentgroves.net/itera.html}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا