ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Astronomical Research: An Astronomy for Development Baseline

248   0   0.0 ( 0 )
 نشر من قبل Val\\'erio A. R. M. Ribeiro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed articles, research research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the SAO/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a Gross National Income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in `astronomy development with a culture of research publishing. We also propose that for a country to develop astronomy it should invest in outside expert visits, send their staff abroad to study and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.



قيم البحث

اقرأ أيضاً

The NSF-sponsored Undergraduate ALFALFA Team (UAT) promotes long-term collaborative research opportunities for faculty and students from 23 U.S. public and private primarily undergraduate institutions (PUIs) within the context of the extragalactic AL FALFA HI blind legacy survey project. Over twelve project years of partnering with Arecibo and Green Bank Observatories, the UAT has had a demonstrable impact on the health of a legacy astronomy project, science education, and equity/inclusion in astronomy, with successful outcomes for 373 UAT students (39% women; ~30% members of underrepresented groups) and 34 faculty (44% women). The UAT model is adaptable to many large scientific projects and can be supported by relatively modest funding. We recommend that granting agencies identify funding resources to support the model, either as an add-on to legacy grant support or as a stand-alone funding source. This could include encouragement of UAT-like components in large scale projects currently being developed, such as the LSST and TMT. By doing this, we will recognize the high numbers of astronomy research-trained heavy-teaching-load faculty at PUIs as an under-utilized resource of the astronomy community (see also White Paper by Ribaudo et al.). These members of our community have the skills and the strong desire to contribute meaningfully to their field, as well as the ability to encourage and interact closely with many talented and motivated undergraduate students from all backgrounds.
The advent of extremely large telescopes will bring unprecedented light-collecting power and spatial resolution, but it will also lead to a significant increase in the size and complexity of focal-plane instruments. The use of freeform mirrors could drastically reduce the number of components in optical systems. Currently, manufacturing issues limit the common use of freeform mirrors at short wavelengths. This article outlines the use of freeform mirrors in astronomical instruments with a description of two efficient freeform optical systems. A new manufacturing method is presented which seeks to overcome the manufacturing issues through hydroforming of thin polished substrates. A specific design of an active array is detailed, which will compensate for residual manufacturing errors, thermoelastic deformation, and gravity-induced errors during observations. The combined hydroformed mirror and the active array comprise the Freeform Active Mirror Experiment, which will produce an accurate, compact, and stable freeform optics dedicated to visible and near-infrared observations.
166 - Jian Xiao 2014
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of t his project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.
This white paper explains that professional astronomy has benefited from settler colonial white supremacist patriarchy. We explicate the impact that this has had on communities which are not the beneficiaries of colonialism and white supremacy. We ad vocate for astronomers to reject these benefits in the future, and we make proposals regarding the steps involved in rejecting colonialist white supremacys benefits. We center ten recommendations on the timely issue of what to do about the Thirty Meter Telescope (TMT) on Maunakea in Hawaii. This paper is written in solidarity with and support of efforts by Native Hawaiian scientists (e.g. Kahanamoku et al. 2019).
85 - Falk Herwig 2018
Collaborations in astronomy and astrophysics are faced with numerous cyber infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous dat a sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small to medium-sized collaborations based on the Jupyter and Docker technology, that allows web-browser enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulation of interior convection in the late phases of stellar evolution. Examples of science that is presently performed on cyberhubs, in the areas 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis and Galactic chemical evolution, are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا