ﻻ يوجد ملخص باللغة العربية
We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displaying the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.
We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagn
In this work, we consider a model of a subsystem interacting with a reservoir and study dynamics of entanglement assuming that the overall time-evolution is governed by non-integrable Hamiltonians. We also compare to an ensemble of Integrable Hamilto
Waves traveling through random media exhibit random focusing that leads to extremely high wave intensities even in the absence of nonlinearities. Although such extreme events are present in a wide variety of physical systems and the statistics of the
We study wave transmission through one-dimensional random nonlinear structures and predict a novel effect resulting from an interplay of nonlinearity and disorder. We reveal that, while weak nonlinearity does not change the typical exponentially smal
This is the first of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce general expressions for the decay rate of spontaneous