ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent truncations of supergravity and $frac{1}{2}$-BPS RG flows in $4d$ SCFTs

60   0   0.0 ( 0 )
 نشر من قبل Carlos Nunez
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the purpose of holographically describing flows from a large family of four dimensional ${cal N}=1$ and ${cal N}=2$ conformal field theories, we discuss truncations of seven dimensional supergravity to five dimensions. We write explicitly the reduced gauged supergravity and find BPS equations for simple configurations. Lifting these flows to eleven dimensions or Massive IIA supergravity, we present string duals to RG flows from strongly coupled conformal theories when deformed by marginal and/or relevant operators. We further discuss observables common to infinite families of ${cal N}=1$ and ${cal N}=2$ QFTs in this context.

قيم البحث

اقرأ أيضاً

The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1)^4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We con struct the full non-linear Kaluza-Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S^8. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS2xM8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.
We revisit the leading irrelevant deformation of $mathcal{N}=4$ Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on $S^3 times mathbb{R}$. We are able to write a closed form expression of the classical acti on thanks to a formalism that realizes eight supercharges off shell. We then investigate integrability of the spectral problem, by studying the spin-chain Hamiltonian in planar perturbation theory. While there are some structural indications that a suitably defined deformation might preserve integrability, we are unable to settle this question by our two-loop calculation; indeed up to this order we recover the integrable Hamiltonian of undeformed $mathcal{N}=4$ SYM due to accidental symmetry enhancement. We also comment on the holographic interpretation of the theory.
This paper presents a projective superspace formulation for 4D N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the stru cture group (SO(3,1) x SU(2) versus SO(3,1) x U(2)), which implies that the super-Weyl transformations are generated by a covariantly chiral parameter instead of a real unconstrained one. We introduce various off-shell supermultiplets which are curved superspace analogues of the superconformal projective multiplets in global supersymmetry and which describe matter fields coupled to supergravity. A manifestly locally supersymmetric and super-Weyl invariant action principle is given. Off-shell locally supersymmetric nonlinear sigma models are presented in this new superspace.
We use holographic renormalization of minimal $mathcal{N}=2$ gauged supergravity in order to derive the general form of the quantum Ward identities for 3d $mathcal{N}=2$ and 4d $mathcal{N}=1$ superconformal theories on general curved backgrounds, inc luding an arbitrary fermionic source for the supercurrent. The Ward identities for 4d $mathcal{N}=1$ theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the $a$ and $c$ anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. We show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all superconformal anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the $Q$-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the $Q$-exactness of the stress tensor, together with the Ward identities, in order to determine the general form of the stress tensor and $R$-current one-point functions in supersymmetric vacua, which allows us to obtain general expressions for the supersymmetric Casimir charges and partition function.
S-folds are a non-perturbative generalization of orientifold 3-planes which figure prominently in the construction of 4D $mathcal{N} = 3$ SCFTs and have also recently been used to realize examples of 4D $mathcal{N} = 2$ SCFTs. In this paper we develo p a general procedure for reading off the flavor symmetry experienced by D3-branes probing 7-branes in the presence of an S-fold. We develop an S-fold generalization of orientifold projection which applies to non-perturbative string junctions. This procedure leads to a different 4D flavor symmetry algebra depending on whether the S-fold supports discrete torsion. We also show that this same procedure allows us to read off admissible representations of the flavor symmetry in the associated 4D $mathcal{N} = 2$ SCFTs. Furthermore this provides a prescription for how to define F-theory in the presence of S-folds with discrete torsion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا