ﻻ يوجد ملخص باللغة العربية
This paper presents a projective superspace formulation for 4D N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the structure group (SO(3,1) x SU(2) versus SO(3,1) x U(2)), which implies that the super-Weyl transformations are generated by a covariantly chiral parameter instead of a real unconstrained one. We introduce various off-shell supermultiplets which are curved superspace analogues of the superconformal projective multiplets in global supersymmetry and which describe matter fields coupled to supergravity. A manifestly locally supersymmetric and super-Weyl invariant action principle is given. Off-shell locally supersymmetric nonlinear sigma models are presented in this new superspace.
The superspace formulation for four-dimensional N = 2 matter-coupled supergravity recently developed in arXiv:0805.4683 makes use of a new type of conformal compensator with infinitely many off-shell degrees of freedom: the so-called covariant weight
This paper is a companion to our earlier work arXiv:0710.3440 in which the projective superspace formulation for matter-coupled simple supergravity in five dimensions was presented. For the minimal multiplet of 5D N=1 supergravity introduced by Howe
The projective superspace formulation for four-dimensional N = 2 matter-coupled supergravity presented in arXiv:0805.4683 makes use of the variant superspace realization for the N = 2 Weyl multiplet in which the structure group is SL(2,C) x SU(2) and
Building on the superspace formulation for four-dimensional N=2 matter-coupled supergravity developed in arXiv:0805.4683, we elaborate upon a general setting for field theory in N=2 conformally flat superspaces, and concentrate specifically on the ca
For general off-shell N=2 supergravity-matter systems in three spacetime dimensions, a formalism is developed to reduce the corresponding actions from superspace to components. The component actions are explicitly computed in the cases of Type I and