ﻻ يوجد ملخص باللغة العربية
We use holographic renormalization of minimal $mathcal{N}=2$ gauged supergravity in order to derive the general form of the quantum Ward identities for 3d $mathcal{N}=2$ and 4d $mathcal{N}=1$ superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d $mathcal{N}=1$ theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the $a$ and $c$ anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. We show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all superconformal anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the $Q$-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the $Q$-exactness of the stress tensor, together with the Ward identities, in order to determine the general form of the stress tensor and $R$-current one-point functions in supersymmetric vacua, which allows us to obtain general expressions for the supersymmetric Casimir charges and partition function.
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs w
Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual te
S-folds are a non-perturbative generalization of orientifold 3-planes which figure prominently in the construction of 4D $mathcal{N} = 3$ SCFTs and have also recently been used to realize examples of 4D $mathcal{N} = 2$ SCFTs. In this paper we develo
F-theory compactifications on appropriate local elliptic Calabi-Yau manifolds engineer six dimensional superconformal field theories and their mass deformations. The partition function $Z_{top}$ of the refined topological string on these geometries c
We study a set of four-dimensional $mathcal{N}=2$ superconformal field theories (SCFTs) $widehat{Gamma}(G)$ labeled by a pair of simply-laced Lie groups $Gamma$ and $G$. They are constructed out of gauging a number of $mathcal{D}_p(G)$ and $(G, G)$ c