ﻻ يوجد ملخص باللغة العربية
This paper presents compact notations for concentration inequalities and convenient results to streamline probabilistic analysis. The new expressions describe the typical sizes and tails of random variables, allowing for simple operations without heavy use of inessential constants. They bridge classical asymptotic notations and modern non-asymptotic tail bounds together. Examples of different kinds demonstrate their efficacy.
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponent
We explore the applications of our previously established likelihood-ratio method for deriving concentration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are de
Log-concave distributions include some important distributions such as normal distribution, exponential distribution and so on. In this note, we show inequalities between two Lp-norms for log-concave distributions on the Euclidean space. These inequa
In many applications it is useful to replace the Moore-Penrose pseudoinverse (MPP) by a different generalized inverse with more favorable properties. We may want, for example, to have many zero entries, but without giving up too much of the stability
We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Speci