ترغب بنشر مسار تعليمي؟ اضغط هنا

Concentration Inequalities from Likelihood Ratio Method

224   0   0.0 ( 0 )
 نشر من قبل Xinjia Chen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Xinjia Chen




اسأل ChatGPT حول البحث

We explore the applications of our previously established likelihood-ratio method for deriving concentration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are developed without the idea of minimizing moment generating functions.



قيم البحث

اقرأ أيضاً

123 - Yandi Shen , Fang Han , 2020
We establish exponential inequalities for a class of V-statistics under strong mixing conditions. Our theory is developed via a novel kernel expansion based on random Fourier features and the use of a probabilistic method. This type of expansion is n ew and useful for handling many notorious classes of kernels.
200 - Tepmony Sim 2021
The class of observation-driven models (ODMs) includes many models of non-linear time series which, in a fashion similar to, yet different from, hidden Markov models (HMMs), involve hidden variables. Interestingly, in contrast to most HMMs, ODMs enjo y likelihoods that can be computed exactly with computational complexity of the same order as the number of observations, making maximum likelihood estimation the privileged approach for statistical inference for these models. A celebrated example of general order ODMs is the GARCH$(p,q)$ model, for which ergodicity and inference has been studied extensively. However little is known on more general models, in particular integer-valued ones, such as the log-linear Poisson GARCH or the NBIN-GARCH of order $(p,q)$ about which most of the existing results seem restricted to the case $p=q=1$. Here we fill this gap and derive ergodicity conditions for general ODMs. The consistency and the asymptotic normality of the maximum likelihood estimator (MLE) can then be derived using the method already developed for first order ODMs.
103 - Meng Yuan , Pengfei Li , 2021
The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponent ial, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data and inference, results in the context of high-dimensional linear and Poisson regressions are also provided. We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.
167 - Chunlin Wang 2008
In this paper, we study the asymptotic normality of the conditional maximum likelihood (ML) estimators for the truncated regression model and the Tobit model. We show that under the general setting assumed in his book, the conjectures made by Hayashi (2000) footnote{see page 516, and page 520 of Hayashi (2000).} about the asymptotic normality of the conditional ML estimators for both models are true, namely, a sufficient condition is the nonsingularity of $mathbf{x_tx_t}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا