ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate Inference for Fully Bayesian Gaussian Process Regression

157   0   0.0 ( 0 )
 نشر من قبل Vidhi Lalchand Miss
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called textit{Type II maximum likelihood} or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call textit{Fully Bayesian Gaussian Process Regression} (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.



قيم البحث

اقرأ أيضاً

Gaussian processes (GPs) are a well-known nonparametric Bayesian inference technique, but they suffer from scalability problems for large sample sizes, and their performance can degrade for non-stationary or spatially heterogeneous data. In this work , we seek to overcome these issues through (i) employing variational free energy approximations of GPs operating in tandem with online expectation propagation steps; and (ii) introducing a local splitting step which instantiates a new GP whenever the posterior distribution changes significantly as quantified by the Wasserstein metric over posterior distributions. Over time, then, this yields an ensemble of sparse GPs which may be updated incrementally, and adapts to locality, heterogeneity, and non-stationarity in training data.
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary multi-modal processes using GPs. The approach is built on extending the input space of a regression problem with a latent variab le that is used to modulate the covariance function over the training data. We show how our approach can be used to model multi-modal and non-stationary processes. We exemplify the approach on a set of synthetic data and provide results on real data from motion capture and geostatistics.
Cross-validation (CV) is a technique for evaluating the ability of statistical models/learning systems based on a given data set. Despite its wide applicability, the rather heavy computational cost can prevent its use as the system size grows. To res olve this difficulty in the case of Bayesian linear regression, we develop a formula for evaluating the leave-one-out CV error approximately without actually performing CV. The usefulness of the developed formula is tested by statistical mechanical analysis for a synthetic model. This is confirmed by application to a real-world supernova data set as well.
224 - Gecheng Chen , Rui Tuo 2020
A primary goal of computer experiments is to reconstruct the function given by the computer code via scattered evaluations. Traditional isotropic Gaussian process models suffer from the curse of dimensionality, when the input dimension is high. Gauss ian process models with additive correlation functions are scalable to dimensionality, but they are very restrictive as they only work for additive functions. In this work, we consider a projection pursuit model, in which the nonparametric part is driven by an additive Gaussian process regression. The dimension of the additive function is chosen to be higher than the original input dimension. We show that this dimension expansion can help approximate more complex functions. A gradient descent algorithm is proposed to maximize the likelihood function. Simulation studies show that the proposed method outperforms the traditional Gaussian process models.
Model-based approaches bear great promise for decision making of agents interacting with the physical world. In the context of spatial environments, different types of problems such as localisation, mapping, navigation or autonomous exploration are t ypically adressed with specialised methods, often relying on detailed knowledge of the system at hand. We express these tasks as probabilistic inference and planning under the umbrella of deep sequential generative models. Using the frameworks of variational inference and neural networks, our method inherits favourable properties such as flexibility, scalability and the ability to learn from data. The method performs comparably to specialised state-of-the-art methodology in two distinct simulated environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا