ﻻ يوجد ملخص باللغة العربية
Model-based approaches bear great promise for decision making of agents interacting with the physical world. In the context of spatial environments, different types of problems such as localisation, mapping, navigation or autonomous exploration are typically adressed with specialised methods, often relying on detailed knowledge of the system at hand. We express these tasks as probabilistic inference and planning under the umbrella of deep sequential generative models. Using the frameworks of variational inference and neural networks, our method inherits favourable properties such as flexibility, scalability and the ability to learn from data. The method performs comparably to specialised state-of-the-art methodology in two distinct simulated environments.
Current approaches in approximate inference for Bayesian neural networks minimise the Kullback-Leibler divergence to approximate the true posterior over the weights. However, this approximation is without knowledge of the final application, and there
Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called textit{
We propose a practical Bayesian optimization method over sets, to minimize a black-box function that takes a set as a single input. Because set inputs are permutation-invariant, traditional Gaussian process-based Bayesian optimization strategies whic
In statistical learning for real-world large-scale data problems, one must often resort to streaming algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of mini-batc
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from