ترغب بنشر مسار تعليمي؟ اضغط هنا

The fundamentals of harnessing the magneto-optics of quantum wires for designing optical amplifiers: Formalism

73   0   0.0 ( 0 )
 نشر من قبل Manvir Kushwaha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum wires occupy a unique status among the semiconducting nanostructures with reduced dimensionality -- no other system seems to have engaged researchers with as many appealing features to pursue. This paper aims at a core issue related with the magnetoplasmon excitations in the quantum wires characterized by the confining harmonic potential and subjected to a longitudinal electric field and a perpendicular magnetic field in the symmetric gauge. Despite the substantive complexity, we obtain the exact analytical expressions for the eigenfunction and eigenenergy, using the scheme of ladder operators, which fundamentally characterize the quantal system. Crucial to this inquiry is an intersubband collective excitation that evolves into a magnetoroton -- above a threshold value of magnetic field -- which observes a negative group velocity between the maxon and the roton. The evidence of negative group velocity implies anomalous dispersion in a gain medium with the population inversion that forms the basis for the lasing action of lasers. Thus, the technological pathway that unfolds is the route to devices exploiting the magnetoroton features for designing the novel optical amplifiers at nanoscale and hence paving the way to a new generation of lasers.

قيم البحث

اقرأ أيضاً

80 - Manvir S. Kushwaha 2019
A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective ex citations in a quantum wire made-up of vertically stacked, self-assembled InAs/GaAs quantum dots in the presence of an applied magnetic field in the symmetric gauge. We compute and illustrate the influence of an applied magnetic field on the behavior characteristics of the density of states, Fermi energy, and collective (magnetoplasmon) excitations [obtained within the framework of random-phase approximation (RPA)]. The Fermi energy is observed to oscillate as a function of the Bloch vector. Remarkably, the intersubband single-particle continuum splits into two with a collective excitation propagating within the gap. This is attributed to the (orbital) quantum number owing to the applied magnetic field. Strikingly, the alteration in the well- and barrier-widths can enable us to customize the excitation spectrum in the desired energy range. These findings demonstrate, for the very first time, the viability and importance of studying the VSQD subjected to an applied magnetic field. The technological promise that emerges is the route to devices exploiting magnetoplasmon qubits as the potential option in designing quantum gates for the quantum communication networks.
83 - Manvir S. Kushwaha 2016
We embark on investigating the magneto-optical absorption in {em spherical} quantum dots {em completely} confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines RPA that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximize the localization of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire (QW) with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the QW axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the QW. The results may provide a possible explanation for the sign-switching anisotropic TMR recently observed in the LaAlO$_3$/SrTiO$_3$ interface.
449 - T. Rejec 2000
We study the conductance threshold of clean nearly straight quantum wires in which an electron is bound. We show that such a system exhibits spin-dependent conductance structures on the rising edge to the first conductance plateau, one near 0.25(2e^2 /h), related to a singlet resonance, and one near 0.75(2e^2/h), related to a triplet resonance. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with circular cross-section and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies are robust and survive to temperatures of a few degrees. With increasing magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. As already shown, optical control of a spin of a magnetic ion is feasible employing photo-generated carriers confined in a quantum dot. A non-radiative recombination, regarded as a severe problem, limited development of quantum dots with magnetic ions. Our photoluminescence studies on, so far unexplored, individual CdTe dots with single cobalt ions and individual CdSe dots with single manganese ions show, however, that even if energetically allowed, the single ion related non-radiative recombination is negligible in such zero-dimensional structures. This opens solotronics for a wide range of even not yet considered systems. Basing on the results of our single spin relaxation experiments and on the material trends, we identify optimal magnetic ion-quantum dot systems for implementation of a single-ion based spin memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا