ترغب بنشر مسار تعليمي؟ اضغط هنا

The magneto-optics in quantum wires comprised of vertically stacked quantum dots: A calling for the magnetoplasmon qubits

81   0   0.0 ( 0 )
 نشر من قبل Manvir Kushwaha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective excitations in a quantum wire made-up of vertically stacked, self-assembled InAs/GaAs quantum dots in the presence of an applied magnetic field in the symmetric gauge. We compute and illustrate the influence of an applied magnetic field on the behavior characteristics of the density of states, Fermi energy, and collective (magnetoplasmon) excitations [obtained within the framework of random-phase approximation (RPA)]. The Fermi energy is observed to oscillate as a function of the Bloch vector. Remarkably, the intersubband single-particle continuum splits into two with a collective excitation propagating within the gap. This is attributed to the (orbital) quantum number owing to the applied magnetic field. Strikingly, the alteration in the well- and barrier-widths can enable us to customize the excitation spectrum in the desired energy range. These findings demonstrate, for the very first time, the viability and importance of studying the VSQD subjected to an applied magnetic field. The technological promise that emerges is the route to devices exploiting magnetoplasmon qubits as the potential option in designing quantum gates for the quantum communication networks.

قيم البحث

اقرأ أيضاً

95 - Manvir S Kushwaha 2021
A theoretical investigation has been made of the magnetoplasmon excitations in a quasi-one-dimensional electron system comprised of vertically stacked, self-assembled InAs/GaAs quantum dots. The smaller length scales involved in the experiments impel us to consider a perfectly periodic system of two-dimensionally confined InAs quantum dot layers separated by GaAs spacers. Subsequent system is subjected to a two-dimensional confining (harmonic) potential in the x-y plane and an applied magnetic field (B) in the symmetric gauge. This scheme defines virtually a system of quantum wire comprised of vertically stacked quantum dots (VSQD). We derive and discuss the Dyson equation, the generalized (nonlocal and dynamic) dielectric function, and the inverse dielectric function for investigating the single-particle and collective (magnetoplasmon) excitations within the framework of (full) random-phase approximation (RPA). As an application, we study the influence of the confinement potential and the magnetic field on the component eigenfunctions, the density of states (DOS), the Fermi energy, the collective excitations, and the inverse dielectric functions. These findings demonstrate, for the very first time, the significance of investigating the system of VSQD subjected to a quantizing magnetic field. Given the edge over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation, investigating the system of VSQD is deemed vital. The results suggest exploiting magnetoplasmon qubits to be a potential option for implementing the solemn idea of quantum state transfer in devising quantum gates for the quantum computation and quantum communication networks.
83 - Manvir S. Kushwaha 2016
We embark on investigating the magneto-optical absorption in {em spherical} quantum dots {em completely} confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines RPA that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximize the localization of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.
72 - Manvir S. Kushwaha 2019
Quantum wires occupy a unique status among the semiconducting nanostructures with reduced dimensionality -- no other system seems to have engaged researchers with as many appealing features to pursue. This paper aims at a core issue related with the magnetoplasmon excitations in the quantum wires characterized by the confining harmonic potential and subjected to a longitudinal electric field and a perpendicular magnetic field in the symmetric gauge. Despite the substantive complexity, we obtain the exact analytical expressions for the eigenfunction and eigenenergy, using the scheme of ladder operators, which fundamentally characterize the quantal system. Crucial to this inquiry is an intersubband collective excitation that evolves into a magnetoroton -- above a threshold value of magnetic field -- which observes a negative group velocity between the maxon and the roton. The evidence of negative group velocity implies anomalous dispersion in a gain medium with the population inversion that forms the basis for the lasing action of lasers. Thus, the technological pathway that unfolds is the route to devices exploiting the magnetoroton features for designing the novel optical amplifiers at nanoscale and hence paving the way to a new generation of lasers.
62 - B. P. van Zyl , , E. Zaremba 2000
Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the syste m are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.
85 - B. P. van Zyl , E. Zaremba , 1999
We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizsacker approximation. Deviations from the ideal collective excitations of isolated parabolically confined ele ctrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to $C_4$ results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا