ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalies in the conduction edge of quantum wires

450   0   0.0 ( 0 )
 نشر من قبل Toni Ramsak
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rejec




اسأل ChatGPT حول البحث

We study the conductance threshold of clean nearly straight quantum wires in which an electron is bound. We show that such a system exhibits spin-dependent conductance structures on the rising edge to the first conductance plateau, one near 0.25(2e^2/h), related to a singlet resonance, and one near 0.75(2e^2/h), related to a triplet resonance. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with circular cross-section and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies are robust and survive to temperatures of a few degrees. With increasing magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.



قيم البحث

اقرأ أيضاً

138 - T. Rejec 2000
We study the conductance threshold of clean nearly straight quantum wires in the magnetic field. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h) are related to a singlet resonance and a triplet resonance, respectively, and survive to temperatures of a few degrees. With increasing in-plane magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.
322 - J. Moser , T. Zibold , S. Roddaro 2005
We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps obse rvable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.
126 - T. Rejec 2002
Anomalies near the conductance threshold of nearly perfect semiconductor quantum wires are explained in terms of singlet and triplet resonances of conduction electrons with a single weakly-bound electron in the wire. This is shown to be a universal e ffect for a wide range of situations in which the effective single-electron confinement is weak. The robustness of this generic behavior is investigated numerically for a wide range of shapes and sizes of cylindrical wires with a bulge. The dependence on gate voltage, source-drain voltage and magnetic field is discussed within the framework of an extended Hubbard model. This model is mapped onto an extended Anderson model, which in the limit of low temperatures is expected to lead to Kondo resonance physics and pronounced many-body effects.
In this paper we study the feasibility of an infrared detector based on intersubband transitions in the conduction band of the junction between two semiconductor quantum wires. We show that by varying the radius of the wires it is possible to enginee r a band structure of the junction that would be favorable for creating and detecting photocurrent. The suggested concept also allows for broadband detection based on arrays of wires with different radii.
The realization of quantum spin Hall (QSH) effect in HgTe quantum wells (QWs) is considered a milestone in the discovery of topological insulators. The QSH edge states are predicted to allow current to flow at the edges of an insulating bulk, as demo nstrated in various experiments. A key prediction of QSH theory that remains to be experimentally verified is the breakdown of the edge conduction under broken time reversal symmetry (TRS). Here we first establish a rigorous framework for understanding the magnetic field dependence of electrostatically gated QSH devices. We then report unexpected edge conduction under broken TRS, using a unique cryogenic microwave impedance microscopy (MIM), on a 7.5 nm HgTe QW device with an inverted band structure. At zero magnetic field and low carrier densities, clear edge conduction is observed in the local conductivity profile of this device but not in the 5.5 nm control device whose band structure is trivial. Surprisingly, the edge conduction in the 7.5 nm device persists up to 9 T with little effect from the magnetic field. This indicates physics beyond simple QSH models, possibly associated with material- specific properties, other symmetry protection and/or electron-electron interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا