ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fermi surface of PtCoO2 from quantum oscillations and electronic structure calculations

125   0   0.0 ( 0 )
 نشر من قبل Elena Hassinger
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The delafossite series of layered oxides include some of the highest conductivity metals ever discovered. Of these, PtCoO2, with a room temperature resistivity of 1.8 microOhmcm for in-plane transport, is the most conducting of all. The high conduction takes place in triangular lattice Pt layers, separated by layers of Co-O octahedra, and the electronic structure is determined by the interplay of the two types of layer. We present a detailed study of quantum oscillations in PtCoO2, at temperatures down to 35 mK and magnetic fields up to 30 T. As for PdCoO2 and PdRhO2, the Fermi surface consists of a single cylinder with mainly Pt character, and an effective mass close to the free electron value. Due to Fermi-surface warping, two close-lying high frequencies are observed. Additionally, a pronounced difference frequency appears. By analysing the detailed angular dependence of the quantum-oscillation frequencies, we establish the warping parameters of the Fermi surface. We compare these results to the predictions of first-principles electronic structure calculations including spin-orbit coupling on Pt and Co and on-site correlation U on Co, and hence demonstrate that electronic correlations in the Co-O layers play an important role in determining characteristic features of the electronic structure of PtCoO2.

قيم البحث

اقرأ أيضاً

102 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
395 - Y. H. Kwan , P. Reiss , Y. Han 2020
Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haasvan Alphen oscillations of the c andidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations for a toroidal Fermi surface originating from the nodal ring. We find evidence of a nontrivial Berry phase shift only in one of the oscillatory frequencies. We interpret this as a Berry phase arising from the semi-classical electronic Landau orbit which links with the nodal ring when the magnetic field lies in the mirror (ab) plane. Furthermore, additional Berry phase accumulates while rotating the magnetic field for the second orbit in the same orientation which does not link with the nodal ring. These effects are expected in CaAgAs due to the lack of inversion symmetry. Our study experimentally demonstrates that CaAgAs is an ideal platform for exploring the physics of nodal line semimetals and our approach can be extended to other materials in which trivial and nontrivial oscillations are present.
We investigate the antiferromagnetic insulating nature of Ca3FeRhO6 both experimentally and theoretically. Susceptibility measurements reveal a Neel temperature T_N = 20 K, and a magnetic moment of 5.3 muB/f. u., while Moessbauer spectroscopy strongl y suggests that the Fe ions, located in trigonal prismatic sites, are in a 3+ high spin state. Transport measurements display a simple Arrhenius law, with an activation energy of 0.2 eV. The experimental results are interpreted with LSDA band structure calculations, which confirm the Fe 3+ state, the high-spin/low-spin scenario, the antiferromagnetic ordering, and the value for the activation energy.
132 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar e (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bondin g of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. Its also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا