ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure and Fermi surface character of LaONiP from first principles

133   0   0.0 ( 0 )
 نشر من قبل Wei-Bing Zhang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bonding of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. Its also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.



قيم البحث

اقرأ أيضاً

We have examined theoretically the electronic band structure and Fermi surface of tetragonal low-temperature superconductor Bi2Pd. Our main results are that (i) the Pd 4d and Bi 6p states determine the main peculiarities of the multiple-sheets FS top ology, thus for this material the complicated superconducting gap structure with different energy gaps on different FS sheets should be assumed; (ii) the effect of the spin-orbit coupling is of minor importance for the distributions of the near-Fermi electronic states; and (iii) this phase adopts 3D-like type owing to the directional bonds between the adjacent atomic sheets.
Very recently, as an important step in the development of layered Fe-free pnictide-oxide superconductors, the new phase BaTi2Bi2O was discovered which has the highest TC (about 4.6 K) among all related non-doped systems. In this Letter, we report for the first time the electronic bands, Fermi surface topology, total and partial densities of electronic states for BaTi2Bi2O obtained by means of the first-principles FLAPW-GGA calculations. The inter-atomic bonding picture is described as a high-anisotropic mixture of metallic, covalent, and ionic contributions. Besides, the structural and electronic factors, which can be responsible for the increased transition temperature for BaTi2Bi2O (as compared with related pnictide-oxides BaTi2As2O and BaTi2Sb2O), are discussed.
By means of the first-principles calculations, we have studied in details the structural, elastic and electronic properties of the new tetragonal CaBe2Ge2-type 5.2K superconductor SrPt2As2 in comparison with two hypothetical SrPt2As2 polymorphs with ThCr2Si2-type structures which differ by atomic configurations of [Pt2As2] (or [Pt2As2]) blocks. We have found that CaBe2Ge2-type SrPt2As2 is a quite unique system with complicated 2D-3D character of near-Fermi bands, and the intermediate type of the Fermi surface, which consists of electronic pockets having cylinder-like (2D) topology (typical for 122 FeAs phases) together with 3D-like electronic and hole pockets, which are characteristic for ThCr2Si2-like iron-free low-Tc superconductors. Our analysis reveals that against ThCr2Si2-like 122 phases, the other features for CaBe2Ge2-like SrPt2As2 are: (1). The essential differences of contributions of states from [Pt2As2] and [Pt2As2] blocks into near-Fermi region when the conduction is expected to be anisotropic and happening mainly in [Pt2As2] blocks; (2). The formation of the 3D system of strong covalent Pt-As bonds (inside and between of [Pt2As2]/[As2Pt2] blocks) which is responsible for enhanced stability of this polymorph, and (3). the essential charge anisotropy between the adjacent [Pt2As2] and [As2Pt2] blocks. We have predicted also that CaBe2Ge2-like SrPt2As2 is mechanically stable, relatively soft material with high compressibility and will behave in a ductile manner. On the contrary the ThCr2Si2-type SrPt2As2 polymorphs which contain only [Pt2As2] or [As2Pt2] blocks, are less stable, their Fermi surfaces adopt a multi-sheet three-dimensional type - similar to ThCr2Si2-like iron-free 122 phases, and these polymorphs will be ductile materials with high elastic anisotropy.
To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures $T_c=7 - 20$ K, we have obtained a first-principles electro nic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K$_3$picene) cases, where the bands are not rigid. The Fermi surface for K$_3$picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.
Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without the appearance of superconductivity. To clarify the controversial experimental phenomena, we have carried out first-principles electronic structure calculations on the compressed NiTe$_2$ with structure searching and optimization. Our calculations show that the pressure can transform NiTe$_2$ from a layered P-3m1 phase to a cubic Pa-3 phase at $sim$10 GPa. Meanwhile, both the P-3m1 and Pa-3 phases possess nontrivial topological properties. The calculated superconducting $T_c$s for these two phases based on the electron-phonon coupling theory both approach 0 K. Further magnetic transport calculations reveal that the sign of Hall resistance for the Pa-3 phase is sensitive to the pressure and the charge doping, in contrast to the case of the P-3m1 phase. Our theoretical predictions on the compressed NiTe$_2$ wait for careful experimental examinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا