ﻻ يوجد ملخص باللغة العربية
Over any smooth algebraic variety over a $p$-adic local field $k$, we construct the de Rham comparison isomorphisms for the etale cohomology with partial compact support of de Rham $mathbb Z_p$-local systems, and show that they are compatible with Poincare duality and with the canonical morphisms among such cohomology. We deduce these results from their analogues for rigid analytic varieties that are Zariski open in some proper smooth rigid analytic varieties over $k$. In particular, we prove finiteness of etale cohomology with partial compact support of any $mathbb Z_p$-local systems, and establish the Poincare duality for such cohomology after inverting $p$.
On any smooth algebraic variety over a $p$-adic local field, we construct a tensor functor from the category of de Rham $p$-adic etale local systems to the category of filtered algebraic vector bundles with integrable connections satisfying the Griff
We construct examples of smooth proper rigid-analytic varieties admitting formal model with projective special fiber and violating Hodge symmetry for cohomology in degrees $geq 3$. This answers negatively a question raised by Hansen and Li.
This paper contains three new results. {bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of etale fundamental groups introduced
In this short notes, we prove a stronger version of Theorem 0.6 in our previous paper arXiv:1709.01485: Given a smooth log scheme $(mathcal{X} supset mathcal{D})_{W(mathbb{F}_q)}$, each stable twisted $f$-periodic logarithmic Higgs bundle $(E,theta)$
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t