ﻻ يوجد ملخص باللغة العربية
This paper contains three new results. {bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of etale fundamental groups introduced in [7,10] and periodic Higgs-de Rham flows introduced in [19]. We establish an equivalence between the categories of projective crystalline representations and twisted periodic Higgs-de Rham flows via the category of twisted Fontaine-Faltings module which is also introduced in this paper. {bf 2.}We study the base change of these objects over very ramified valuation rings and show that a stable periodic Higgs bundle gives rise to a geometrically absolutely irreducible crystalline representation. {bf 3.} We investigate the dynamic of self-maps induced by the Higgs-de Rham flow on the moduli spaces of rank-2 stable Higgs bundles of degree 1 on $mathbb{P}^1$ with logarithmic structure on marked points $D:={x_1,,...,x_n}$ for $ngeq 4$ and construct infinitely many geometrically absolutely irreducible $mathrm{PGL_2}(mathbb Z_p^{mathrm{ur}})$-crystalline representations of $pi_1^text{et}(mathbb{P}^1_{{mathbb{Q}}_p^text{ur}}setminus D)$. We find an explicit formula of the self-map for the case ${0,,1,,infty,,lambda}$ and conjecture that a Higgs bundle is periodic if and only if the zero of the Higgs field is the image of a torsion point in the associated elliptic curve $mathcal{C}_lambda$ defined by $ y^2=x(x-1)(x-lambda)$ with the order coprime to $p$.
In this short notes, we prove a stronger version of Theorem 0.6 in our previous paper arXiv:1709.01485: Given a smooth log scheme $(mathcal{X} supset mathcal{D})_{W(mathbb{F}_q)}$, each stable twisted $f$-periodic logarithmic Higgs bundle $(E,theta)$
Let X be a smooth complex projective variety with basepoint x. We prove that every rigid integral irreducible representation $pi_1(X,x)to SL (3,{mathbb C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t
Over any smooth algebraic variety over a $p$-adic local field $k$, we construct the de Rham comparison isomorphisms for the etale cohomology with partial compact support of de Rham $mathbb Z_p$-local systems, and show that they are compatible with Po
We introduce a spreading out technique to deduce finiteness results for etale fundamental groups of complex varieties by characteristic $p$ methods, and apply this to recover a finiteness result proven recently for local fundamental groups in characteristic $0$ using birational geometry.