ﻻ يوجد ملخص باللغة العربية
Motivated by the quest for experimentally accessible dynamical probes of Floquet topological insulators, we formulate the linear response theory of a periodically driven system. We illustrate the applications of this formalism by giving general expressions for optical conductivity of Floquet systems, including its homodyne and heterodyne components and beyond. We obtain the Floquet optical conductivity of specific driven models, including two-dimensional Dirac material such as the surface of a topological insulator, graphene, and the Haldane model irradiated with circularly or linearly polarized laser, as well as semiconductor quantum well driven by an ac potential. We obtain approximate analytical expressions and perform numerically exact calculations of the Floquet optical conductivity in different scenarios of the occupation of the Floquet bands, in particular, the diagonal Floquet distribution and the distribution obtained after a quench. We comment on experimental signatures and detection of Floquet topological phases using optical probes.
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys
Anderson localization in two-dimensional topological insulators takes place via the so-called levitation and pair annihilation process. As disorder is increased, extended bulk states carrying opposite topological invariants move towards each other in
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque
The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and t
We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e