ﻻ يوجد ملخص باللغة العربية
This paper concerns state constrained optimal control problems, in which the dynamic constraint takes the form of a differential inclusion. If the differential inclusion does not depend on time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, is independent of time. If the differential inclusion is Lipschitz continuous, then the Hamitonian, evaluated along the optimal state trajectory and the co-state trajectory, is Lipschitz continuous. These two well-known results are examples of the following principle: the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, inherits the regularity properties of the differential inclusion, regarding its time dependence. We show that this principle also applies to another kind of regularity: if the differential inclusion has bounded variation with respect to time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, has bounded variation. Two applications of these newly found properties are demonstrated. One is to derive improved conditions which guarantee the nondegeneracy of necessary conditions of optimality, in the form of a Hamiltonian inclusion. The other application is to derive new, less restrictive, conditions under which minimizers in the calculus of variations have bounded slope. The analysis is based on a new, local, concept of differential inclusions that have bounded variation with respect to the time variable, in which conditions are imposed on the multifunction involved, only in a neighborhood of a given state trajectory.
The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement ou
In this article, we provide sufficient conditions under which the controlled vector fields solution of optimal control problems formulated on continuity equations are Lipschitz regular in space. Our approach involves a novel combination of mean-field
We propose a novel and efficient training method for RNNs by iteratively seeking a local minima on the loss surface within a small region, and leverage this directional vector for the update, in an outer-loop. We propose to utilize the Frank-Wolfe (F
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environm
This paper proposes an algorithmic technique for a class of optimal control problems where it is easy to compute a pointwise minimizer of the Hamiltonian associated with every applied control. The algorithm operates in the space of relaxed controls a