ﻻ يوجد ملخص باللغة العربية
This paper proposes an algorithmic technique for a class of optimal control problems where it is easy to compute a pointwise minimizer of the Hamiltonian associated with every applied control. The algorithm operates in the space of relaxed controls and projects the final result into the space of ordinary controls. It is based on the descent direction from a given relaxed control towards a pointwise minimizer of the Hamiltonian. This direction comprises a form of gradient projection and for some systems, is argued to have computational advantages over direct gradient directions. The algorithm is shown to be applicable to a class of hybrid optimal control problems. The theoretical results, concerning convergence of the algorithm, are corroborated by simulation examples on switched-mode hybrid systems as well as on a problem of balancing transmission- and motion energy in a mobile robotic system.
This paper concerns a first-order algorithmic technique for a class of optimal control problems defined on switched-mode hybrid systems. The salient feature of the algorithm is that it avoids the computation of Frechet or G^ateaux derivatives of the
We present a time-parallelization method that enables to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computa
In this report, we present a new Linear-Quadratic Semistabilizers (LQS) theory for linear network systems. This new semistable H2 control framework is developed to address the robust and optimal semistable control issues of network systems while pres
This paper presents a new fast and robust algorithm that provides fuel-optimal impulsive control input sequences that drive a linear time-variant system to a desired state at a specified time. This algorithm is applicable to a broad class of problems
In many applications, and in systems/synthetic biology, in particular, it is desirable to compute control policies that force the trajectory of a bistable system from one equilibrium (the initial point) to another equilibrium (the target point), or i