ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon thermalization and a condensation phase transition in an electrically pumped semiconductor microresonat

52   0   0.0 ( 0 )
 نشر من قبل Stephane Barland
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an experimental study of photon thermalization and condensation in a semiconductor microresonator in the weak-coupling regime. We measure the dispersion relation of light and the photon mass in a single-wavelength, broad-area resonator. The observed luminescence spectrum is compatible with a room-temperature, thermal-equilibrium distribution. A phase transition, identified by a saturation of the population at high energies and a superlinear increase of the occupation at low energy, takes place when the phase-space density is of order unity. We explain our observations by Bose-Einstein condensation of photons in equilibrium with a particle reservoir and discuss the relation with laser emission.

قيم البحث

اقرأ أيضاً

We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attr ibute it to cooperative pairing of electron-hole (e-h) radiative recombinations. The phase transitions from amplified spontaneous emission to superfluorescence and then to lasing regime is confirmed by observing (i) abrupt peak power growth accompanied by spectral broadening, (ii) spectral shape with hyperbolic secant envelope and (iii) red shift of central wavelength of SF emission pulse. The observed red shift of SF emission is shown to be caused by the pairing of e-h pairs in an indirect cooperative X-transition.
We design and fabricate an on-chip laser source that produces a directional beam with low spatial coherence. The lasing modes are based on the axial orbit in a stable cavity and have good directionality. To reduce the spatial coherence of emission, t he number of transverse lasing modes is maximized by fine-tuning the cavity geometry. Decoherence is reached in a few nanoseconds. Such rapid decoherence will facilitate applications in ultrafast speckle-free full-field imaging.
70 - Nadav Landau 2020
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh old as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topolo gically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.
Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer W Se$_2$, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe$_2$ under both optical and electrical excitation. This paves the way towards the realization of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا