ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically pumped semiconductor laser with low spatial coherence and directional emission

130   0   0.0 ( 0 )
 نشر من قبل Kyungduk Kim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We design and fabricate an on-chip laser source that produces a directional beam with low spatial coherence. The lasing modes are based on the axial orbit in a stable cavity and have good directionality. To reduce the spatial coherence of emission, the number of transverse lasing modes is maximized by fine-tuning the cavity geometry. Decoherence is reached in a few nanoseconds. Such rapid decoherence will facilitate applications in ultrafast speckle-free full-field imaging.

قيم البحث

اقرأ أيضاً

We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attr ibute it to cooperative pairing of electron-hole (e-h) radiative recombinations. The phase transitions from amplified spontaneous emission to superfluorescence and then to lasing regime is confirmed by observing (i) abrupt peak power growth accompanied by spectral broadening, (ii) spectral shape with hyperbolic secant envelope and (iii) red shift of central wavelength of SF emission pulse. The observed red shift of SF emission is shown to be caused by the pairing of e-h pairs in an indirect cooperative X-transition.
Semiconductor lasers capable of generating a vortex beam with a specific orbital angular momentum (OAM) order are highly attractive for applications ranging from nanoparticle manipulation, imaging and microscopy to fibre and quantum communications. I n this work, an electrically pumped OAM laser operating at telecom wavelengths is fabricated by monolithically integrating an optical vortex emitter with a distributed feedback (DFB) laser on the same InGaAsP/InP epitaxial wafer. A single-step dry etching process is adopted to complete the OAM emitter, equipped with specially designed top gratings. The vortex beam emitted by the integrated laser is captured, and its OAM mode purity characterized. The electrically pumped OAM laser eliminates the external laser required by silicon- or silicon-on-insulator (SOI)-based OAM emitters, thus demonstrating great potential for applications in communication systems and quantum domain.
We report on an experimental study of photon thermalization and condensation in a semiconductor microresonator in the weak-coupling regime. We measure the dispersion relation of light and the photon mass in a single-wavelength, broad-area resonator. The observed luminescence spectrum is compatible with a room-temperature, thermal-equilibrium distribution. A phase transition, identified by a saturation of the population at high energies and a superlinear increase of the occupation at low energy, takes place when the phase-space density is of order unity. We explain our observations by Bose-Einstein condensation of photons in equilibrium with a particle reservoir and discuss the relation with laser emission.
Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topolo gically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a siz e of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of $10^{10}$ to $10^{11}$, which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا