ﻻ يوجد ملخص باللغة العربية
The complex Sachdev-Ye-Kitaev (cSYK) model is a charge-conserving model of randomly interacting fermions. The interaction term can be chosen such that the model exhibits chiral symmetry. Then, depending on the charge sector and the number of interacting fermions, level spacing statistics suggests a fourfold categorization of the model into the three Wigner-Dyson symmetry classes. In this work, inspired by previous findings for the Majorana Sachdev-Ye-Kitaev model, we embed the symmetry classes of the cSYK model in the Altland-Zirnbauer framework and identify consequences of chiral symmetry originating from correlations across different charge sectors. In particular, we show that for an odd number of fermions, the model hosts exact many-body zero modes that can be combined into a generalized fermion that does not affect the systems energy. This fermion directly leads to quantum-mechanical supersymmetry that, unlike explicitly supersymmetric cSYK constructions, does not require fine-tuned couplings, but only chiral symmetry. Signatures of the generalized fermion, and thus supersymmetry, include the long-time plateau in time-dependent correlation functions of fermion-parity-odd observables: The plateau may take nonzero value only for certain combinations of the fermion structure of the observable and the systems symmetry class. We illustrate our findings through exact diagonalization simulations of the systems dynamics.
The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as
Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large $N$ theories, it has proven
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the i
We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, $N$ Majorana fermions with infinite range interactions in $0+1$ dimensions. We have found that, close to the ground state $E approx 0$, discrete symmetries alter qualitatively the spect