ﻻ يوجد ملخص باللغة العربية
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the infrared asymmetry of the Green function. The same relation is obtained by a renormalization theory. The conserved charge contributes a compact scalar field to the effective action, from which we derive the many-body density of states and extract the charge compressibility. We compute the latter via three distinct numerical methods and obtain consistent results. Finally, we present a two dimensional bulk picture with free Dirac fermions for the zero temperature entropy.
We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the $k$-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth a
The Sachdev-Ye-Kitaev (SYK) model provides an uncommon example of a chaotic theory that can be analysed analytically. In the deep infrared limit, the original model has an emergent conformal (reparametrisation) symmetry that is broken both spontaneou
We show analytically that the spectral density of the $q$-body Sachdeev-Ye-Kitaev (SYK) model agrees with that of Q-Hermite polynomials with Q a non-trivial function of $q ge 2$ and the number of Majorana fermions $N gg 1$. Numerical results, obtaine
We present a detailed quantitative analysis of spectral correlations in the Sachdev-Ye-Kitaev (SYK) model. We find that the deviations from universal Random Matrix Theory (RMT) behavior are due to a small number of long-wavelength fluctuations from o
The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions whose large N limit is dominated by melonic graphs. In this review we first present a diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.