ﻻ يوجد ملخص باللغة العربية
We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotropic. We show that for smooth anisotropies, in the small nonlocality regime, minimizers converge to the Wulff shape in $C^1$-norm and quantify the rate of convergence. We also obtain a quantitative extension of the energy of any minimizer around the energy of a Wulff shape yielding a geometric stability result. For certain crystalline surface tensions we can determine the global minimizer and obtain its exact energy expansion in terms of the nonlocality parameter.
We study energy minimization of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axisymmetric domains and in a restricted class of $mathbb{S}^1$-equivariant (i.e., axially symmetric) configurations. We
We prove that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the perturbed biharmonic operator $Delta_g^2+q$ on a conformally transversally anisotropic Riemannian manifold of dimensi
We show that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the Schrodinger operator $-Delta_g+q$ on a conformally transversally anisotropic manifold of dimension $geq 3$, provided t
The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $OmegasubsetR^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $Omega$ wi
In this paper we prove the convergence of solutions to discrete models for binary waveguide arrays toward those of their formal continuum limit, for which we also show the existence of localized standing waves. This work rigorously justifies formal a