ترغب بنشر مسار تعليمي؟ اضغط هنا

On the continuum limit for a model of binary waveguide arrays

123   0   0.0 ( 0 )
 نشر من قبل William Borrelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William Borrelli




اسأل ChatGPT حول البحث

In this paper we prove the convergence of solutions to discrete models for binary waveguide arrays toward those of their formal continuum limit, for which we also show the existence of localized standing waves. This work rigorously justifies formal arguments and numerical simulations present in the Physics literature.

قيم البحث

اقرأ أيضاً

The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinet ic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $OmegasubsetR^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $Omega$ wi th the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $partialOmega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
We study strong ratio limit properties of the quotients of the heat kernels of subcritical and critical operators which are defined on a noncompact Riemannian manifold.
353 - Sergio Conti 2017
We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive the simplified functional from the full Ginzburg-Landau model rigorously via $Gamma$-convergence. The detailed analysis of the limiting procedure and the study of the limiting functional lead to a precise understanding of the multiple scales contained in the model.
We consider the damped/driven cubic NLS equation on the torus of a large period $L$ with a small nonlinearity of size $lambda$, a properly scaled random forcing and dissipation. We examine its solutions under the subsequent limit when first $lambdato 0$ and then $Lto infty$. The first limit, called the limit of discrete turbulence, is known to exist, and in this work we study the second limit $Ltoinfty$ for solutions to the equations of discrete turbulence. Namely, we decompose the solutions to formal series in amplitude and study the second order truncation of this series. We prove that the energy spectrum of the truncated solutions becomes close to solutions of a damped/driven nonlinear wave kinetic equation. Kinetic nonlinearity of the latter is similar to that which usually appears in works on wave turbulence, but is different from it (in particular, it is non-autonomous). Apart from tools from analysis and stochastic analysis, our work uses two powerful results from the number theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا