ﻻ يوجد ملخص باللغة العربية
We study energy minimization of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axisymmetric domains and in a restricted class of $mathbb{S}^1$-equivariant (i.e., axially symmetric) configurations. We assume smooth and nonvanishing $mathbb{S}^1$-equivariant (e.g. homeotropic) Dirichlet boundary conditions and a physically relevant norm constraint (Lyuksyutov constraint) in the interior. Relying on results in cite{DMP1} in the nonsymmetric setting, we prove partial regularity of minimizers away from a possible finite set of interior singularities lying on the symmetry axis. For a suitable class of domains and boundary data we show that for smooth minimizers (torus solutions) the level sets of the signed biaxiality are generically finite union of tori of revolution. Concerning nonsmooth minimizers (split solutions), we characterize their asymptotic behavior around any singular point in terms of explicit $mathbb{S}^1$-equivariant harmonic maps into $mathbb{S}^4$, whence the generic level sets of the signed biaxiality contains invariant topological spheres. Finally, in the model case of a nematic droplet, we provide existence of torus solutions, at least when the boundary data are suitable uniaxial deformations of the radial anchoring, and existence of split solutions for boundary data which are suitable linearly full harmonic spheres.
We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains. Assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a corresponding physically relevant norm c
We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotr
In this paper, we study the connection between the Ericksen-Leslie equations and the Beris-Edwards equations in dimension two. It is shown that the weak solutions to the Beris-Edwards equations converge to the one to the Ericksen-Leslie equations as
We construct entire solutions of the magnetic Ginzburg-Landau equations in dimension 4 using Lyapunov-Schmidt reduction. The zero set of these solutions are close to the minimal submanifolds studied by Arezzo-Pacardcite{Arezzo}. We also show the exis
In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an $L^1$ function, extending the Lagrangian theory in cite{BouchutCri