ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of the phase-coherent DC conductivity of few-layered antimonene in the presence of surface disorder. It is well known that while a single layer is a trivial semiconductor, multiple layers (typically a minimum of $approx$ 7) turn into a semi-metal with a nontrivial topological invariant featuring protected and decoupled surface states. We employ the finite-size Kubo formalism based on density functional theory calculations to show that the conductivity is amply dominated by the topological surface states even without bulk disorder. More importantly, the conductivity of the surface states does not show traces of a metal-insulator transition while the bulk ones can be driven towards an insulating phase in presence of only surface disorder. These results suggest that few-layered antimonene, despite not being insulating in the bulk, can present many of the advantages attributed to topological insulators under very general experimental conditions.
Antimonene -- a single layer of antimony atoms -- and its few layer forms are among the latest additions to the 2D mono-elemental materials family. Numerous predictions and experimental evidence of its remarkable properties including (opto)electronic
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate
Two-dimensional (2D) antimony (Sb, antimonene) recently attracted interest due to its peculiar electronic properties and its suitability as anode material in next generation batteries. Sb however exhibits a large polymorphic/allotropic structural div
Studies of possible localization of phonons in nanomaterials have gained importance in recent years in the context of thermoelectricity where phonon-localization can reduce thermal conductivity, thereby improving the efficiency of thermoelectric devi
The collective excitation spectrum of two-dimensional (2D) antimonene is calculated beyond the low energy continuum approximation. The dynamical polarizability is computed using a 6-orbitals tight-binding model that properly accounts for the band str