ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-layer antimonene electrical properties

80   0   0.0 ( 0 )
 نشر من قبل Pablo Ares
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antimonene -- a single layer of antimony atoms -- and its few layer forms are among the latest additions to the 2D mono-elemental materials family. Numerous predictions and experimental evidence of its remarkable properties including (opto)electronic, energetic or biomedical, among others, together with its robustness under ambient conditions, have attracted the attention of the scientific community. However, experimental evidence of its electrical properties is still lacking. Here, we characterized the electronic properties of mechanically exfoliated flakes of few-layer (FL) antimonene of different thicknesses (~ 2-40 nm) through photoemission electron microscopy, kelvin probe force microscopy and transport measurements, which allows us to estimate a sheet resistance of ~ 1200 $Omega$sq$^{-1}$ and a mobility of ~ 150 cm$^2$V$^{-1}$s$^{-1}$ in ambient conditions, independent of the flake thickness. Alternatively, our theoretical calculations indicate that topologically protected surface states (TPSS) should play a key role in the electronic properties of FL antimonene, which supports our experimental findings. We anticipate our work will trigger further experimental studies on TPSS in FL antimonene thanks to its simple structure and significant stability in ambient environments.

قيم البحث

اقرأ أيضاً

Two-dimensional (2D) antimony (Sb, antimonene) recently attracted interest due to its peculiar electronic properties and its suitability as anode material in next generation batteries. Sb however exhibits a large polymorphic/allotropic structural div ersity, which is also influenced by the Sbs support. Thus understanding Sb heterostructure formation is key in 2D Sb integration. Particularly 2D Sb/graphene interfaces are of prime importance as contacts in electronics and electrodes in batteries. We thus study here few-layered 2D Sb/graphene heterostructures by atomic-resolution (scanning) transmission electron microscopy. We find the co-existence of two Sb morphologies: First is a 2D growth morphology of layered beta-Sb with beta-Sb(001)||graphene(001) texture. Second are one-dimensional (1D) Sb nanowires which can be matched to beta-Sb with beta-Sb[2-21] perpendicular to graphene(001) texture and are structurally also closely related to thermodynamically non-preferred cubic Sb(001)||graphene(001). Importantly, both Sb morphologies show rotational van-der-Waals epitaxy with the graphene support. Both Sb morphologies are well resilient against environmental bulk oxidation, although superficial Sb-oxide layer formation merits consideration, including formation of novel epitaxial Sb2O3(111)/beta-Sb(001) heterostructures. Exact Sb growth behavior is sensitive on employed processing and substrate properties including, notably, the nature of the support underneath the direct graphene support. This introduces the substrate underneath a direct 2D support as a key parameter in 2D Sb heterostructure formation. Our work provides insights into the rich phase and epitaxy landscape in 2D Sb and 2D Sb/graphene heterostructures.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba nd $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature $T_c$ well below the melting point. Its consequences on material properties are stud ied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above $T_c$. As the in-plane lattice transforms from a rectangle onto a square at $T_c$, the electronic, spin, optical, and piezo-electric properties dramatically depart from earlier predictions. Indeed, the $Y-$ and $X-$points in the Brillouin zone become effectively equivalent at $T_c$, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at $T_c$. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement has been drawn by theoretical predictions of giant piezo-electricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about $3times 10^{-12}$ $C/K m$ here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides
The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration (CPG). Here we use continuous wave photomodulation spectroscopy to identify the optical signature of long-lived charge carriers and femtosecond pump-probe spectroscopy to follow the CPG dynamics. We find that intitial photoexcitation yields a branching between excitons and charge carriers, followed by excitation energy dependent hot exciton dissociation as an additional CPG mechanism. Based on these findings, we make simple suggestions for the design of more efficient MoS2 photovoltaic and photodetector devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا