ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermolubricity of Xe monolayers on graphene

182   0   0.0 ( 0 )
 نشر من قبل Matteo Pierno
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nanofriction of Xe monolayers deposited on graphene was explored with a quartz crystal microbalance (QCM) at temperatures between 25 and 50 K. Graphene was grown by chemical vapor deposition and transferred to the QCM electrodes with a polymer stamp. At low temperatures, the Xe monolayers are fully pinned to the graphene surface. Above 30 K, the Xe film slides and the depinning onset coverage beyond which the film starts sliding decreases with temperature. Similar measurements repeated on bare gold show an enhanced slippage of the Xe films and a decrease of the depinning temperature below 25 K. Nanofriction measurements of krypton and nitrogen confirm this scenario.This thermolubric behavior is explained in terms of a recent theory of the size dependence of static friction between adsorbed islands and crystalline substrates.



قيم البحث

اقرأ أيضاً

We demonstrate how self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. We characterize this two-dimensional soli d state transformation on the atomic scale and study the physical and chemical properties of the formed graphene sheets by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates we successfully use Cu(111) single crystals and the technologically relevant polycrystalline copper foils.
We perform ab initio calculations that indicate that the relative stability of antiphase boundaries (APB) with armchair and zigzag chiralities in monolayer boron nitride (BN) is determined by the chemical potentials of the boron and nitrogen species in the synthesis process. In an N-rich environment, a zigzag APB with N-rich core is the most stable structure, while under B-rich or intrinsic growth conditions, an armchair APB with stoichiometric core is the most stable. This stability transition is shown to arise from a competition between homopolar-bond (B-B and N-N) and elastic energy costs in the core of the APBs. Moreover, in the presence of a carbon source we find that a carbon-doped zigzag APB becomes the most stable boundary near the N-rich limit. The electronic structure of the two types of APBs in BN is shown to be particularly distinct, with the zigzag APB depicting defect-like deep electronic bands in the band gap, while the armchair APB shows bulk-like shallow electronic bands.
Elemental phosphorous is believed to have several stable allotropes that are energetically nearly degenerate, but chemically reactive. To prevent chemical degradation under ambient conditions, these structures may be capped by monolayers of hexagonal boron nitride ({em h}-BN) or graphene. We perform {em ab initio} density functional calculations to simulate scanning tunneling microscopy (STM) images of different layered allotropes of phosphorus and study the effect of capping layers on these images. We find that protective monolayers of insulating {em h}-BN allow to distinguish between the different structural phases of phosphorus underneath, even though the images are filtered through only nitrogen atoms that appear transparent. No such distinction is possible for phosphorus films capped by semimetallic graphene that masks the underlying structure. Our results suggest that the real-space imaging capability of STM is not hindered by selected capping layers that protect phosphorus surfaces.
The magnetic properties of a monolayer of Fe4 single molecule magnets grafted onto a Au (111) thin film have been investigated using low energy muon spin rotation. The properties of the monolayer are compared to bulk Fe4. We find that the magnetic pr operties in the monolayer are consistent with those measured in the bulk, strongly indicating that the single molecule magnet nature of Fe4 is preserved in a monolayer. However, differences in the temperature dependencies point to a small difference in their energy scale. We attribute this to a ~60% increase in the intramolecular magnetic interactions in the monolayer.
Monolayers of transition-metal dichalcogenides such as WSe2 have become increasingly attractive due to their potential in electrical and optical applications. Because the properties of these 2D systems are known to be affected by their surroundings, we report how the choice of the substrate material affects the optical properties of monolayer WSe2. To accomplish this study, pump-density-dependent micro-photoluminescence measurements are performed with time-integrating and time-resolving acquisition techniques. Spectral information and power-dependent mode intensities are compared at 290K and 10K for exfoliated WSe2 on SiO2/Si, sapphire (Al2O3), hBN/Si3N4/Si, and MgF2, indicating substrate-dependent appearance and strength of exciton, trion, and biexciton modes. Additionally, one CVD-grown WSe2 monolayer on sapphire is included in this study for direct comparison with its exfoliated counterpart. Time-resolved micro-photoluminescence shows how radiative decay times strongly differ for different substrate materials. Our data indicates exciton-exciton annihilation as a shortening mechanism at room temperature, and subtle trends in the decay rates in correlation to the dielectric environment at cryogenic temperatures. On the measureable time scales, trends are also related to the extent of the respective 2D-excitonic modes appearance. This result highlights the importance of further detailed characterization of exciton features in 2D materials, particularly with respect to the choice of substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا