ﻻ يوجد ملخص باللغة العربية
The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables has greatly diminished the applicability of estimation theory in many practical implementations. The Holevo Cramer-Rao bound (HCRB) provides the most fundamental, simultaneously attainable bound for multi-parameter estimation problems. A general closed form for the HCRB is not known given that it requires a complex optimisation over multiple variables. In this work, we develop an analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We apply our results to compare the performance of different probe states in magnetic field sensing, and characterise the performance of state tomography on the codespace of noisy bosonic error-correcting codes. The sensitivity of state tomography on noisy binomial codestates can be improved by tuning two coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work provides fundamental insights and makes significant progress towards the estimation of multiple incompatible observables.
Simultaneous estimation of multiple parameters is required in many practical applications. A lower bound on the variance of simultaneous estimation is given by the quantum Fisher information matrix. This lower bound is, however, not necessarily achie
The entanglement content of superpositions of quantum states is investigated based on a measure called {it concurrence}. Given a bipartite pure state in arbitrary dimension written as the quantum superposition of two other such states, we find simple
The quantification of the measurement uncertainty aspect of Heisenbergs Uncertainty Principle---that is, the study of trade-offs between accuracy and disturbance, or between accuracies in an approximate joint measurement on two incompatible observabl
Being one of the centroidal concepts in quantum theory, the fundamental constraint imposed by Heisenberg uncertainty relations has always been a subject of immense attention and challenging in the context of joint measurements of general quantum mech
The quantum adversary method is a versatile method for proving lower bounds on quantum algorithms. It yields tight bounds for many computational problems, is robust in having many equivalent formulations, and has natural connections to classical lowe