ترغب بنشر مسار تعليمي؟ اضغط هنا

An upper bound on the number of compatible parameters in simultaneous quantum estimation

50   0   0.0 ( 0 )
 نشر من قبل Shingo Kukita
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shingo Kukita




اسأل ChatGPT حول البحث

Simultaneous estimation of multiple parameters is required in many practical applications. A lower bound on the variance of simultaneous estimation is given by the quantum Fisher information matrix. This lower bound is, however, not necessarily achievable. There exists a necessary and sufficient condition for its achievability. It is unknown how many parameters can be estimated while satisfying this condition. In this paper, we analyse an upper bound on the number of such parameters through linear-algebraic techniques. This upper bound depends on the algebraic structure of the quantum system used as a probe. We explicitly calculate this bound for two quantum systems: single qubit and two-qubit X-states.



قيم البحث

اقرأ أيضاً

The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables has greatly diminish ed the applicability of estimation theory in many practical implementations. The Holevo Cramer-Rao bound (HCRB) provides the most fundamental, simultaneously attainable bound for multi-parameter estimation problems. A general closed form for the HCRB is not known given that it requires a complex optimisation over multiple variables. In this work, we develop an analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We apply our results to compare the performance of different probe states in magnetic field sensing, and characterise the performance of state tomography on the codespace of noisy bosonic error-correcting codes. The sensitivity of state tomography on noisy binomial codestates can be improved by tuning two coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work provides fundamental insights and makes significant progress towards the estimation of multiple incompatible observables.
We present a scheme for a self-testing quantum random number generator. Compared to the fully device-independent model, our scheme requires an extra natural assumption, namely that the mean energy per signal is bounded. The scheme is self-testing, as it allows the user to verify in real-time the correct functioning of the setup, hence guaranteeing the continuous generation of certified random bits. Based on a prepare-and-measure setup, our scheme is practical, and we implement it using only off-the-shelf optical components. The randomness generation rate is 1.25 Mbits/s, comparable to commercial solutions. Overall, we believe that this scheme achieves a promising trade-off between the required assumptions, ease-of-implementation and performance.
We derive an upper bound for the time needed to implement a generic unitary transformation in a $d$ dimensional quantum system using $d$ control fields. We show that given the ability to control the diagonal elements of the Hamiltonian, which allows for implementing any unitary transformation under the premise of controllability, the time $T$ needed is upper bounded by $Tleq frac{pi d^{2}(d-1)}{2g_{text{min}}}$ where $g_{text{min}}$ is the smallest coupling constant present in the system. We study the tightness of the bound by numerically investigating randomly generated systems, with specific focus on a system consisting of $d$ energy levels that interact in a tight-binding like manner.
81 - Koichi Yamagata 2021
In quantum estimation theory, the Holevo bound is known as a lower bound of weighed traces of covariances of unbiased estimators. The Holevo bound is defined by a solution of a minimization problem, and in general, explicit solution is not known. Whe n the dimension of Hilbert space is two and the number of parameters is two, a explicit form of the Holevo bound was given by Suzuki. In this paper, we focus on a logarithmic derivative lies between the symmetric logarithmic derivative (SLD) and the right logarithmic derivative (RLD) parameterized by $betain[0,1]$ to obtain lower bounds of weighted trace of covariance of unbiased estimator. We introduce the maximum logarithmic derivative bound as the maximum of bounds with respect to $beta$. We show that all monotone metrics induce lower bounds, and the maximum logarithmic derivative bound is the largest bound among them. We show that the maximum logarithmic derivative bound has explicit solution when the $d$ dimensional model has $d+1$ dimensional $mathcal{D}$ invariant extension of the SLD tangent space. Furthermore, when $d=2$, we show that the maximization problem to define the maximum logarithmic derivative bound is the Lagrangian duality of the minimization problem to define Holevo bound, and is the same as the Holevo bound. This explicit solution is a generalization of the solution for a two dimensional Hilbert space given by Suzuki. We give also examples of families of quantum states to which our theory can be applied not only for two dimensional Hilbert spaces.
108 - Ilia Krasikov 2006
Let ${bf P}_k^{(alpha, beta)} (x)$ be an orthonormal Jacobi polynomial of degree $k.$ We will establish the following inequality begin{equation*} max_{x in [delta_{-1},delta_1]}sqrt{(x- delta_{-1})(delta_1-x)} (1-x)^{alpha}(1+x)^{beta} ({bf P}_{k}^{( alpha, beta)} (x))^2 < frac{3 sqrt{5}}{5}, end{equation*} where $delta_{-1}<delta_1$ are appropriate approximations to the extreme zeros of ${bf P}_k^{(alpha, beta)} (x) .$ As a corollary we confirm, even in a stronger form, T. Erd{e}lyi, A.P. Magnus and P. Nevai conjecture [Erd{e}lyi et al., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602-614], by proving that begin{equation*} max_{x in [-1,1]}(1-x)^{alpha+{1/2}}(1+x)^{beta+{1/2}}({bf P}_k^{(alpha, beta)} (x))^2 < 3 alpha^{1/3} (1+ frac{alpha}{k})^{1/6}, end{equation*} in the region $k ge 6, alpha, beta ge frac{1+ sqrt{2}}{4}.$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا